精英家教网 > 高中数学 > 题目详情
14.已知数列{an}中,a1=1,且${a_n}=\frac{n}{n-1}{a_{n-1}}+2n•{3^{n-2}}({n≥2,n∈{N^*}})$.
(1)求a2,a3的值及数列{an}的通项公式;
(2)令${b_n}=\frac{{{3^{n-1}}}}{a_n}({n∈{N^*}})$,设数列{bn}的前n项和为Sn,求Sn并比较${S_{2^n}}$与n的大小.

分析 (1)利用递推关系可得:a2,a3.由${a_n}=\frac{n}{n-1}{a_{n-1}}+2n•{3^{n-2}}$,可得$\frac{a_n}{n}=\frac{{{a_{n-1}}}}{n-1}+2n•{3^{n-2}}$,利用累加求和方法即可得出.
(2)n∈N*时,${b_n}=\frac{{{3^{n-1}}}}{a_n}=\frac{1}{n}$,则${S_{2^n}}=1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{2^n}$.记函数$f(n)={S_{2^n}}-n=({1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{2^n}})-n$,可得f(n+1)-f(n)=$(\frac{1}{{2}^{n}+1}+\frac{1}{{2}^{n}+2}+…+\frac{1}{{2}^{n+1}})$-1<$\frac{{2}^{n}}{{2}^{n}+1}$-1<0,因此f(n+1)<f(n).对n分类讨论可得结论:${S_{2^2}}>2$,${S_{2^3}}<3$.n≥3时,f(n)≤f(3)<0,此时${S_{2^n}}<n$.

解答 解:(1)当n=2时,${a_2}=\frac{2}{2-1}{a_{2-1}}+2•2•{3^{2-2}}=2+4=6$,
当n=3时,${a_3}=\frac{3}{3-1}{a_{3-1}}+2•3•{3^{3-2}}=9+18=27$,
因为${a_n}=\frac{n}{n-1}{a_{n-1}}+2n•{3^{n-2}}$,所以$\frac{a_n}{n}=\frac{{{a_{n-1}}}}{n-1}+2n•{3^{n-2}}$,
当n≥2时,由累加法得$\frac{a_n}{n}-\frac{a_1}{1}=2+2×3+2×{3^2}+…+2×{3^{n-2}}$,
因为a1=1,所以n≥2时,有$\frac{a_n}{n}=1+\frac{{2({1-{3^{n-1}}})}}{1-3}={3^{n-1}}$,即${a_n}=n•{3^{n-1}}({n≥2})$,又n=1时,${a_1}=1•{3^{1-1}}=1$,
故${a_n}=n•{3^{n-1}}({n∈{N^*}})$.
(2)n∈N*时,${b_n}=\frac{{{3^{n-1}}}}{a_n}=\frac{1}{n}$,则${S_{2^n}}=1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{2^n}$.
记函数$f(n)={S_{2^n}}-n=({1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{2^n}})-n$,所以$f({n+1})=({1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{{{2^{n+1}}}}})-({n+1})$,
则f(n+1)-f(n)=$(\frac{1}{{2}^{n}+1}+\frac{1}{{2}^{n}+2}+…+\frac{1}{{2}^{n+1}})$-1<$\frac{{2}^{n}}{{2}^{n}+1}$-1<0,
所以f(n+1)<f(n).
由于$f(1)={S_{2^1}}-1=({1+\frac{1}{2}})-1>0$,此时${S_{2^1}}>1$,$f(2)={S_{2^2}}-2=({1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}})-2>0$,此时${S_{2^2}}>2$,$f(3)={S_{2^3}}-3=({1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}})-3<0$,此时${S_{2^3}}<3$,
由于f(n+1)<f(n),故n≥3时,f(n)≤f(3)<0,此时${S_{2^n}}<n$.
综上所述,当n=1,2时,${S_{2^n}}>n$;当n≥3(n∈N*)时,${S_{2^n}}<n$.

点评 本题考查了等差数列与等比数列的通项公式与求和公式、数列递推关系、累加求和方法、作差法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.如图是函数$y=-\sqrt{3}x+1$的大致图象,则直线$y=-\sqrt{3}x+1$的图象与x轴夹角α大小为(  )
A.120°B.60°C.30°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在长方体ABCD-A1B1C1D1中,点E在棱CC1的延长线上,且CC1=C1E=BC=$\frac{1}{2}$AB=1.
(1)求D1E的中点F到平面ACB1的距离;
(2)求证:平面D1B1E⊥平面DCB1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.不等式$\frac{2}{x+1}≥x$的解集是(  )
A.{x|-2≤x<-1或x≥1}B.{x|x≤-2或-1≤x<1}C.{x|x≤-2或-1<x≤1}D.{x|x≤-2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,内角A,B,C的对边分别为a,b,c,且满足sinBcosA=-(2sinC+sinA)cosB.
(1)求角B的大小;
(2)求函数f(x)=2cos2x+cos(2x-B)在区间$[0,\frac{π}{2}]$上的最小值及对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若向量$\overrightarrow a=(-3,2)$,$\overrightarrow b=(-1,0)$,向量$λ\overrightarrow a+\overrightarrow b$与$\overrightarrow a-2\overrightarrow b$垂直,则λ等于(  )
A.$-\frac{1}{7}$B.$\frac{1}{7}$C.$-\frac{1}{6}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合M={x|x2-2x>0},集合N={0,1,2,3,4},则M∩N等于(  )
A.{4}B.{3,4}C.{0,1,2}D.{0,1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知sin(α+$\frac{π}{3}$)=$\frac{3}{5}$,则cos($\frac{π}{6}$-α)的值是(  )
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若随机变量ξ~B(5,$\frac{1}{3}$),则D(3ξ+2)=(  )
A.$\frac{10}{9}$B.$\frac{10}{3}$C.$\frac{16}{3}$D.10

查看答案和解析>>

同步练习册答案