精英家教网 > 高中数学 > 题目详情
4.若随机变量ξ~B(5,$\frac{1}{3}$),则D(3ξ+2)=(  )
A.$\frac{10}{9}$B.$\frac{10}{3}$C.$\frac{16}{3}$D.10

分析 利用二项分布的方差公式计算即可.

解答 解:随机变量ξ~B(5,$\frac{1}{3}$),
∴D(ξ)=5×$\frac{1}{3}$×(1-$\frac{1}{3}$)=$\frac{10}{9}$,
∴D(3ξ+2)=9D(ξ)=9×$\frac{10}{9}$=10.
故选:D.

点评 本题考查了离散型随机变量方差的计算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知数列{an}中,a1=1,且${a_n}=\frac{n}{n-1}{a_{n-1}}+2n•{3^{n-2}}({n≥2,n∈{N^*}})$.
(1)求a2,a3的值及数列{an}的通项公式;
(2)令${b_n}=\frac{{{3^{n-1}}}}{a_n}({n∈{N^*}})$,设数列{bn}的前n项和为Sn,求Sn并比较${S_{2^n}}$与n的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,四棱锥中P-ABCD,PA⊥平面ABCD,∠PDA=30°,O,E,F分别是AC,AB,PC的中点.
(1)证明;平面EFO∥平面PAD;
(2)证明:FO⊥平面ABCD;
(3)求EF与平面ABCD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.直线l过点(1,4),且在两坐标轴上的截距的积是18,求此直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.由数字1,3,4,6,x(0≤x≤9,x∈N)五个数字组成没有重复数字的五位数,所有这些五位数各位数字之和为2640,则x=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)已知关于x的不等式ax2+bx+c<0的解集是{x|x<-2,或x>-$\frac{1}{2}$},求不等式ax2-bx+c>0的解集.
(2)已知M是关于x的不等式2x2+(3a-7)x+3+a-2a2<0的解集,且M中的一个元素是0,求实数a的取值范围,并用a表示出该不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设数列{an}的前n项和为Sn.已知a1=1,2Sn=nan+1-$\frac{n(n+1)(n+2)}{3}$,n∈N*
(Ⅰ) 求数列{an}的通项公式;
(Ⅱ)  证明:对一切正整数n,有$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}<\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知α,β为平面,a,b,c为直线,下列命题正确的是(  )
A.若a⊆α,b∥a,则b∥αB.若α⊥β,α∩β=c,b⊥c,则b⊥β
C.若a⊥b,b⊥c,则a∥cD.若a∩b=A,a⊆α,b⊆α,a∥β,b∥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,假设每局比赛中,甲胜乙的概率为$\frac{1}{2}$,甲胜丙、乙胜丙的概率都为$\frac{2}{3}$,各局比赛的结果都相互独立,第1局甲当裁判.
(Ⅰ)求第三局甲当裁判的概率;
(Ⅱ)记前4局中乙当裁判的次数为X,求X的概率分布与数学期望;
(Ⅲ)已知第三局甲当裁判,求前4局中乙当裁判的次数恰好为1次的概率.

查看答案和解析>>

同步练习册答案