精英家教网 > 高中数学 > 题目详情
12.直线l过点(1,4),且在两坐标轴上的截距的积是18,求此直线的方程.

分析 设出直线方程,利用两坐标轴上的截距的积是18,求出a,b,可得直线方程

解答 解 设直线l的方程为$\frac{x}{a}$+$\frac{y}{b}$=1,
则$\left\{\begin{array}{l}{ab=18}\\{\frac{1}{a}+\frac{4}{b}=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=3}\\{b=6}\end{array}\right.$或$\left\{\begin{array}{l}{a=\frac{3}{2}}\\{b=12}\end{array}\right.$
则直线l的方程2x+y-6=0
或8x+y-12=0.

点评 本题考查直线方程,考查直线的截距方程,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.不等式$\frac{2}{x+1}≥x$的解集是(  )
A.{x|-2≤x<-1或x≥1}B.{x|x≤-2或-1≤x<1}C.{x|x≤-2或-1<x≤1}D.{x|x≤-2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知sin(α+$\frac{π}{3}$)=$\frac{3}{5}$,则cos($\frac{π}{6}$-α)的值是(  )
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若△ABC的三边之比为3:5:7,则这个三角形较大的锐角的余弦值为(  )
A.$-\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{13}{14}$D.$\frac{11}{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线l经过点M(1,6),且倾斜角为$\frac{π}{3}$,圆C的方程是x2+y2-2x-24=0,直线l与圆C交于P1,P2两点.
(1)求圆心C到直线l的距离; 
(2)求P1,P2两点间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.圆的参数方程为$\left\{\begin{array}{l}{x=4cosθ}\\{y=4sinθ}\end{array}\right.$(θ为参数,0≤θ<2π),若Q(-2,2$\sqrt{3}$)是圆上一点,则对应的参数θ的值是(  )
A.$\frac{π}{3}$B.$\frac{2}{3}$πC.$\frac{4}{3}$πD.$\frac{5}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若随机变量ξ~B(5,$\frac{1}{3}$),则D(3ξ+2)=(  )
A.$\frac{10}{9}$B.$\frac{10}{3}$C.$\frac{16}{3}$D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和Sn=n2+2n.
(1)求数列{an}的通项公式;
(2)若数列$\left\{{\frac{a_n}{2^n}}\right\}$的前n项和为Tn,证明:$\frac{3}{2}≤{T_n}$<5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若a与b相交,则过a与b平行的平面有0个;若a与b异面,则过a与b平行的平面有1个.

查看答案和解析>>

同步练习册答案