精英家教网 > 高中数学 > 题目详情
9.(1)已知关于x的不等式ax2+bx+c<0的解集是{x|x<-2,或x>-$\frac{1}{2}$},求不等式ax2-bx+c>0的解集.
(2)已知M是关于x的不等式2x2+(3a-7)x+3+a-2a2<0的解集,且M中的一个元素是0,求实数a的取值范围,并用a表示出该不等式的解集.

分析 (1)不等式ax2+bx+c<0的解集得出a<0,且对应方程的两实数根,利用根与系数的关系求出$\frac{b}{a}$和$\frac{c}{a}$的值,再化不等式ax2-bx+c>0,从而求出它的解集;
(2)x=0代入不等式2x2+(3a-7)x+3+a-2a2<0,求出a的取值范围;再求对应二次不等式2x2+(3a-7)x+(3+a-2a2)<0的解集.

解答 解:(1)关于x的不等式ax2+bx+c<0的解集是{x|x<-2,或x>-$\frac{1}{2}$},
∴a<0,且方程ax2+bx+c=0的两实数根为-2和-$\frac{1}{2}$,
由根与系数的关系知,$\left\{\begin{array}{l}{-2-\frac{1}{2}=-\frac{b}{a}}\\{-2×(-\frac{1}{2})=\frac{c}{a}}\end{array}\right.$;
解得$\frac{b}{a}$=$\frac{5}{2}$,$\frac{c}{a}$=1;
∴不等式ax2-bx+c>0可化为x2-$\frac{5}{2}$x+1<0,
解得$\frac{1}{2}$<x<2,
∴所求不等式的解集为($\frac{1}{2}$,2);
(2)根据题意,把x=0代入不等式2x2+(3a-7)x+3+a-2a2<0,
得3+a-2a2<0,
即2a2-a-3>0,
解得a<-1或a>$\frac{3}{2}$;
∴实数a的取值范围是(-∞,-1)∪($\frac{3}{2}$,+∞);
二次不等式对应的方程为2x2+(3a-7)x+(3+a-2a2)=0,
其两根为3-2a,$\frac{1}{2}$a+$\frac{1}{2}$,
当a<-1时,3-2a>$\frac{1}{2}$a+$\frac{1}{2}$,
∴不等式2x2+(3a-7)x+(3+a-2a2)<0的解集为{x|$\frac{1}{2}$a+$\frac{1}{2}$<x<3-2a};
当a>$\frac{3}{2}$时,3-2a<$\frac{1}{2}$a+$\frac{1}{2}$,
∴不等式2x2+(3a-7)x+(3+a-2a2)<0的解集为{x|3-2a<x<$\frac{1}{2}$a+$\frac{1}{2}$}.

点评 本题考查了二次不等式的解法与应用问题,也考查了分类讨论的数学思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若向量$\overrightarrow a=(-3,2)$,$\overrightarrow b=(-1,0)$,向量$λ\overrightarrow a+\overrightarrow b$与$\overrightarrow a-2\overrightarrow b$垂直,则λ等于(  )
A.$-\frac{1}{7}$B.$\frac{1}{7}$C.$-\frac{1}{6}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若△ABC的三边之比为3:5:7,则这个三角形较大的锐角的余弦值为(  )
A.$-\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{13}{14}$D.$\frac{11}{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.圆的参数方程为$\left\{\begin{array}{l}{x=4cosθ}\\{y=4sinθ}\end{array}\right.$(θ为参数,0≤θ<2π),若Q(-2,2$\sqrt{3}$)是圆上一点,则对应的参数θ的值是(  )
A.$\frac{π}{3}$B.$\frac{2}{3}$πC.$\frac{4}{3}$πD.$\frac{5}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若随机变量ξ~B(5,$\frac{1}{3}$),则D(3ξ+2)=(  )
A.$\frac{10}{9}$B.$\frac{10}{3}$C.$\frac{16}{3}$D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.数列$\frac{1}{2},\frac{1}{6},\frac{1}{12},\frac{1}{20},…$的一个通项公式是(  )
A.${a_n}=\frac{1}{n(n-1)}$B.${a_n}=\frac{1}{2n(2n-1)}$C.${a_n}=\frac{1}{n}-\frac{1}{n+1}$D.${a_n}=1-\frac{1}{n}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和Sn=n2+2n.
(1)求数列{an}的通项公式;
(2)若数列$\left\{{\frac{a_n}{2^n}}\right\}$的前n项和为Tn,证明:$\frac{3}{2}≤{T_n}$<5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=mlnx-$\frac{2n}{x}$(m,n∈R)在x=1处有极值1.
(1)求实数m,n的值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设p:实数x满足x2-4ax+3a2≤0(a>0),q:实数x满足$\frac{x-3}{x-2}<0$
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案