分析 (1)求出函数的导数,利用函数的极值为1,列出方程组,求解即可.
(2)化简函数的解析式,利用导函数的符号,判断函数的单调性,求解函数的单调区间即可.
解答 解:(1)由条件函数f(x)=mlnx-$\frac{2n}{x}$得f′(x)=$\frac{m}{x}+\frac{2n}{{x}^{2}}$.
因为f(x)在x=1处有极值1,得$\left\{\begin{array}{l}f(1)=1\\ f'(1)=0\end{array}\right.$,即$\left\{\begin{array}{l}{-2n=1}\\{m+2n=0}\end{array}\right.$解得m=1,n=-$\frac{1}{2}$.
经验证满足题意.…(6分)
(2)由(1)可得f(x)=lnx+$\frac{1}{x}$,定义域是(0,+∞),
f′(x)=$\frac{1}{x}-\frac{1}{{x}^{2}}$=$\frac{x-1}{{x}^{2}}$,
由f′(x)>0,得x>1;f′(x)<0,得0<x<1.
所以函数f(x)的单调减区间是(0,1),单调增区间是(1,+∞). …(12分)
点评 本题考查函数的导数的应用,函数的极值以及函数的单调区间的求法,考查计算能力.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | 3 | C. | -1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a⊆α,b∥a,则b∥α | B. | 若α⊥β,α∩β=c,b⊥c,则b⊥β | ||
| C. | 若a⊥b,b⊥c,则a∥c | D. | 若a∩b=A,a⊆α,b⊆α,a∥β,b∥β,则α∥β |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com