精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)是R上的奇函数,且在(0,+∞)上有f'(x)>0,若f(-1)=0,那么关于x的不等式xf(x)<0的解集是(-1,0)∪(0,1).

分析 根据题意,由导数与函数单调性的关系,可得函数f(x)在(0,+∞)为增函数,结合函数的奇偶性可得f(x)在(-∞,0)上也为增函数,且f(1)=-f(-1)=0;由不等式的性质可得xf(x)<0⇒$\left\{\begin{array}{l}{x>0}\\{f(x)<0=f(1)}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{f(x)>0=f(-1)}\end{array}\right.$,解可得x的取值范围,即可得答案.

解答 解:根据题意,函数f(x)在(0,+∞)上有f'(x)>0,则函数在(0,+∞)为增函数,
又由函数f(x)是R上的奇函数,则函数f(x)在(-∞,0)上也为增函数;
且f(1)=-f(-1)=0
当x>0时,xf(x)<0⇒$\left\{\begin{array}{l}{x>0}\\{f(x)<0=f(1)}\end{array}\right.$,则有0<x<1,即(0,1),
当x<0时,xf(x)<0⇒$\left\{\begin{array}{l}{x<0}\\{f(x)>0=f(-1)}\end{array}\right.$,则有-1<x<0,即(-1,0),
综合可得:xf(x)<0的解集为:(-1,0)∪(0,1);
故答案为:(-1,0)∪(0,1).

点评 本题考查函数的奇偶性与单调性的综合应用,涉及函数的导数与单调性的关系,关键是利用函数奇偶性的性质进行分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=mlnx-$\frac{2n}{x}$(m,n∈R)在x=1处有极值1.
(1)求实数m,n的值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设p:实数x满足x2-4ax+3a2≤0(a>0),q:实数x满足$\frac{x-3}{x-2}<0$
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.焦点在x轴上的双曲线C1的离心率为e1,焦点在y轴上的双曲线C2的离心率为e2,已知C1与C2具有相同的渐近线,当e12+4e22取最小值时,e1的值为(  )
A.1B.$\frac{\sqrt{6}}{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.为做好2022年北京冬季奥运会的宣传工作,组委会计划从某大学选取若干大学生志愿者,某记者在该大学随机调查了300名大学生,以了解他们是否愿意做志愿者工作,得到的数据如表所示:
愿意做志愿者工作不愿意做志愿者工作合计
男大学生180
女大学生45
合计200
(Ⅰ)根据题意完成表格;
(Ⅱ)是否有90%的把握认为愿意做志愿者工作与性别有关?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
P(K2≥k)0.50.400.250.150.10
k00.4550.7081.3232.0722.706

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法正确的是(  )
A.到点F1(-4,0),F2(4,0)的距离之和等于从点(5,3)到F1,F2的距离之和的点的轨迹是双曲线.
B.已知F1(-4,0),F2(4,0),到两点F1,F2的距离之和等于6的点的轨迹是椭圆.
C.已知F1(-4,0),F2(4,0),到两点F1,F2的距离之和大于8的点的轨迹是椭圆.
D.到点F1(-4,0),F2(4,0)的距离相等的点的轨迹是椭圆.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数$f(x)=\left\{\begin{array}{l}2-|{lnx}|,x>0\\{({x+2})^2},x≤0\end{array}\right.$,若函数y=f(x)+b(其中b∈R)恰有3个零点,则b的取值范围是{-2,0}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知递增的等差数列{an},首项a1=2,Sn为其前n项和,且2S1,2S2,3S3成等比数列.
(I)求{an}的通项公式;
(II)设${b_n}=\frac{4}{{{a_n}{a_{n+1}}}}$,若数列{bn}的前n项和为Tn,且${T_n}<\frac{m}{5}$(m为正整数)恒成立,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若不等式x2+ax+2≥0对一切x∈$({0,\frac{1}{2}}]$成立,则a的最小值为(  )
A.$-\frac{9}{2}$B.-2C.-$\frac{5}{2}$D.-3

查看答案和解析>>

同步练习册答案