精英家教网 > 高中数学 > 题目详情
3.已知递增的等差数列{an},首项a1=2,Sn为其前n项和,且2S1,2S2,3S3成等比数列.
(I)求{an}的通项公式;
(II)设${b_n}=\frac{4}{{{a_n}{a_{n+1}}}}$,若数列{bn}的前n项和为Tn,且${T_n}<\frac{m}{5}$(m为正整数)恒成立,求m的最小值.

分析 (I)设递增的等差数列{an}的公差为d>0,首项a1=2,Sn为其前n项和,且2S1,2S2,3S3成等比数列.可得$(2{S}_{2})^{2}$=2S1•3S3,即4(4+d)2=4×3$(6+\frac{3×2}{2}d)$,d>0,解得d.
(II)${b_n}=\frac{4}{{{a_n}{a_{n+1}}}}=\frac{1}{n}-\frac{1}{n+1}$,可得${T_n}=1-\frac{1}{n+1}$,因此$\frac{m}{5}$>1-$\frac{1}{n+1}$恒成立,解得m的最小值.

解答 解:(I)设递增的等差数列{an}的公差为d>0,
∵首项a1=2,Sn为其前n项和,且2S1,2S2,3S3成等比数列.
∴$(2{S}_{2})^{2}$=2S1•3S3,即4(4+d)2=4×3$(6+\frac{3×2}{2}d)$,d>0,解得d=2,
∴an=2+2(n-1)=2n.
(II)∵${b_n}=\frac{4}{{{a_n}{a_{n+1}}}}=\frac{1}{n}-\frac{1}{n+1}$,
∴Tn=$(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$
=1-$\frac{1}{n+1}$.
∴Tn=1-$\frac{1}{n+1}$,
∴$\frac{m}{5}$>1-$\frac{1}{n+1}$恒成立,∴$\frac{m}{5}≥$1,即m≥5.
即m的最小值是5.

点评 本题考查等差数列与等比数列的通项公式、裂项求和方法、等价转化方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.在等差数列{an}中,若a4+a6+a8+a10+a12=90,则${a_{10}}-\frac{1}{3}{a_{14}}$的值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)是R上的奇函数,且在(0,+∞)上有f'(x)>0,若f(-1)=0,那么关于x的不等式xf(x)<0的解集是(-1,0)∪(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若关于x的方程x3-3x+m=0在[0,2]上有两个根,则实数m的取值范围为(  )
A.[0,2)B.[-2,2)C.(-2,0]D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在某次试验中,有两个试验数据x,y统计的结果如下面的表格
序号xyx2xy
11212
22346
334912
4441616
5552525
15185561
(1)求出y对x的回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中回归系数$\stackrel{∧}{a}$,$\stackrel{∧}{b}$;
(2)估计当x为10时$\stackrel{∧}{y}$的值是多少?
(附:在线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{{{\sum_{i=1}^n{x_i^2-n\overline x}}^2}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若随机变量X服从标准正态分布,即X~N(0,1).且P(X<-1.96)=0.025,则P(X<1.96)=(  )
A.0.025B.0.075C.0.05D.0.975

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知二次函数f(x)=x2+bx+c的两个零点分别在区间(-2,-1)和(-1,0)内,则f(3)的取值范围是(  )
A.(12,20)B.(12,18)C.(18,20)D.(8,18)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)已知关于x的不等式ax2+bx+2>0的解集为(-1,2),求关于x的不等式bx2-ax-2>0的解集. 
(2)解不等式$\frac{2-x}{x+4}>1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知递增的等差数列{an}中,a1a6=11,a3+a4=12,则数列{an}前10项的和为S10=100.

查看答案和解析>>

同步练习册答案