精英家教网 > 高中数学 > 题目详情
11.若关于x的方程x3-3x+m=0在[0,2]上有两个根,则实数m的取值范围为(  )
A.[0,2)B.[-2,2)C.(-2,0]D.(-∞,-2)∪(2,+∞)

分析 作出y=-x3+3x的函数图象,根据f(x)=m有两解得出m的范围.

解答 解:由x3-3x+m=0得m=-x3+3x,
令f(x)=-x3+3x,则f′(x)=-3x2+3=3(1-x2),
∴当0<x<1时,f′(x)>0,当1<x<2时,f′(x)<0,
∴f(x)在[0,1]上单调递增,在(1,2]上单调递减,
又f(0)=0,f(1)=2,f(2)=-2,
作出f(x)在[0,2]上的函数图象如图所示:

∵关于x的方程x3-3x+m=0在[0,2]上有两个根,即m=f(x)有两根,
∴0≤m<2.
故选:A.

点评 本题考查了函数单调性的判断与最值计算,方程根与函数图象的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.矩形ABCD的对角线AC,BD成60°角,把矩形所在的平面以AC为折痕,折成一个直二面角D-AC-B,连接BD,则BD与平面ABC所成角的正切值为(  )
A.$\sqrt{\frac{7}{10}}$B.$\frac{\sqrt{21}}{7}$C.$\frac{3}{2}$D.$\frac{\sqrt{7}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.焦点在x轴上的双曲线C1的离心率为e1,焦点在y轴上的双曲线C2的离心率为e2,已知C1与C2具有相同的渐近线,当e12+4e22取最小值时,e1的值为(  )
A.1B.$\frac{\sqrt{6}}{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法正确的是(  )
A.到点F1(-4,0),F2(4,0)的距离之和等于从点(5,3)到F1,F2的距离之和的点的轨迹是双曲线.
B.已知F1(-4,0),F2(4,0),到两点F1,F2的距离之和等于6的点的轨迹是椭圆.
C.已知F1(-4,0),F2(4,0),到两点F1,F2的距离之和大于8的点的轨迹是椭圆.
D.到点F1(-4,0),F2(4,0)的距离相等的点的轨迹是椭圆.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数$f(x)=\left\{\begin{array}{l}2-|{lnx}|,x>0\\{({x+2})^2},x≤0\end{array}\right.$,若函数y=f(x)+b(其中b∈R)恰有3个零点,则b的取值范围是{-2,0}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图ABCD是正方形,PD⊥面ABCD,PD=DC,E是PC的中点求证:DE⊥面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知递增的等差数列{an},首项a1=2,Sn为其前n项和,且2S1,2S2,3S3成等比数列.
(I)求{an}的通项公式;
(II)设${b_n}=\frac{4}{{{a_n}{a_{n+1}}}}$,若数列{bn}的前n项和为Tn,且${T_n}<\frac{m}{5}$(m为正整数)恒成立,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在参加市里主办的科技知识竞赛的学生中随机选取了40名学生的成绩作为样本,这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组,成绩大于等于40分且小于50分;第二组,成绩大于等于50分且小于60分;…第六组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.在选取的40名学生中.
(1)求成绩在区间[80,90)内的学生人数及成绩在区间[60,100]内平均成绩;
(2)从成绩大于等于80分的学生中随机选3名学生,求至少有1名学生成绩在区间[90,100]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.从0,1,2,3,4,5这6个数字中任意取4个数字组成一个没有重复数字的四位数,这个数不能被3整除的概率为(  )
A.$\frac{17}{25}$B.$\frac{14}{25}$C.$\frac{12}{25}$D.$\frac{8}{25}$

查看答案和解析>>

同步练习册答案