精英家教网 > 高中数学 > 题目详情
1.矩形ABCD的对角线AC,BD成60°角,把矩形所在的平面以AC为折痕,折成一个直二面角D-AC-B,连接BD,则BD与平面ABC所成角的正切值为(  )
A.$\sqrt{\frac{7}{10}}$B.$\frac{\sqrt{21}}{7}$C.$\frac{3}{2}$D.$\frac{\sqrt{7}}{2}$

分析 设AD=1,计算D到AC的距离AE,垂足E到B的距离BE,则$\frac{DE}{BE}$即为所求.

解答 解:∵AC,BD成60°角,OA=OD,∴△AOD是等边三角形,
过D作DE⊥AC,则E为OA的中点,
设AD=1,则DE=$\frac{\sqrt{3}}{2}$,AE=$\frac{1}{2}$,AB=$\sqrt{3}$,
∴BE=$\sqrt{A{B}^{2}+A{E}^{2}-2AB•AE•cos30°}$=$\frac{\sqrt{7}}{2}$,
∴折叠后BD与平面ABC所成角的正切值为$\frac{DE}{BE}$=$\frac{\sqrt{21}}{7}$.
故选B.

点评 本题考查了线面角的计算,将平面图形转化为立体图形,作出线面角是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.有一段演绎推理是这样的:“直线平行于平面,则此直线平行于平面内的所有直线;已知直线b∥平面α,直线a?平面α,则直线b∥直线a”.结论显然是错误的,这是因为(1).
(1)大前提错误    (2)推理形式错误     (3)小前提错误     (4)以上都错误.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等差数列{an}的前n和为Sn,公差d≠0.且a3+S5=42,a1,a4,a13成等比数列
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若Sn表示数列{an}的前n项和,求数列$\left\{{\frac{1}{S_n}}\right\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若tanα=4的值,则$\frac{{sin(π-α)-sin(\frac{π}{2}+α)}}{cos(-α)}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知样本x1,x2,x3,…,xn的方差是2,则样本3x1+2,3x2+2,3x3+2,…,3xn+2的标准差为3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如2x+2-x=5,求4x+$\frac{1}{{4}^{x}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在等差数列{an}中,若a4+a6+a8+a10+a12=90,则${a_{10}}-\frac{1}{3}{a_{14}}$的值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求下列函数的导数
(1))y=$\root{4}{{x}^{3}}$+2x+5;              
(2)y=x2sinx+cosx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若关于x的方程x3-3x+m=0在[0,2]上有两个根,则实数m的取值范围为(  )
A.[0,2)B.[-2,2)C.(-2,0]D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

同步练习册答案