精英家教网 > 高中数学 > 题目详情
6.如2x+2-x=5,求4x+$\frac{1}{{4}^{x}}$的值.

分析 利用4x+$\frac{1}{{4}^{x}}$=(2x+2-x2-2即可得出.

解答 解:∵2x+2-x=5,∴4x+$\frac{1}{{4}^{x}}$=(2x+2-x2-2=23.

点评 本题考查了指数运算性质、乘法公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知数列{an}的前n项和Sn,且满足Sn-Sn-1+2SnSn-1=0(n≥2),a1=$\frac{1}{2}$,则Sn=$\frac{1}{2n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在正方体ABCD-A1B1C1D1中,E、F分别为棱BB1和DD1的中点,M为棱DC的中点.
(1)求证:平面FB1C1∥平面ADE;
(2)求证:D1M⊥平面ADE;
(3)求二面角A1-DE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知点A(1,2),B(-2,3),则$|{\overrightarrow{AB}}|$=$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.矩形ABCD的对角线AC,BD成60°角,把矩形所在的平面以AC为折痕,折成一个直二面角D-AC-B,连接BD,则BD与平面ABC所成角的正切值为(  )
A.$\sqrt{\frac{7}{10}}$B.$\frac{\sqrt{21}}{7}$C.$\frac{3}{2}$D.$\frac{\sqrt{7}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,且|F1F2|=4$\sqrt{3}$,M($\sqrt{3}$,-$\frac{\sqrt{13}}{2}$)是椭圆上一点.
(1)求椭圆C的标准方程.
(2)过点N(-8,0)的直线与椭圆C相交于A,B两点,记△ABF1的面积为S,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=x3+ax2+(a+6)x+1有极值,则a的取值范围是(  )
A.-1<a<2B.-3<a<6C.a<-3或a>6D.a<-1或a>2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.对于a,b∈(0,+∞),a+b≥2$\sqrt{ab}$(大前提),$x+\frac{1}{x}≥2\sqrt{x•\frac{1}{x}}$(小前提),所以$x+\frac{1}{x}≥2$(结论).以上推理过程中的错误为(  )
A.大前提B.小前提C.结论D.无错误

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图ABCD是正方形,PD⊥面ABCD,PD=DC,E是PC的中点求证:DE⊥面PBC.

查看答案和解析>>

同步练习册答案