精英家教网 > 高中数学 > 题目详情
11.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,且|F1F2|=4$\sqrt{3}$,M($\sqrt{3}$,-$\frac{\sqrt{13}}{2}$)是椭圆上一点.
(1)求椭圆C的标准方程.
(2)过点N(-8,0)的直线与椭圆C相交于A,B两点,记△ABF1的面积为S,求S的最大值.

分析 (1)由题意求得c,可得a2=b2+12,把点M的坐标代入椭圆方程求得b2,得到a2,则椭圆方程可求;
(2)由题意设直线l方程为:x=my-8(m≠0),由的到直线的距离公式求出F1到直线l的距离d,联立直线方程与椭圆方程,化为关于y的方程,利用弦长公式求得|AB|,代入三角形面积公式,换元后利用基本不等式求得最值.

解答 解:(1)由2c=4$\sqrt{3}$,得c=2$\sqrt{3}$,则a2=b2+c2=b2+12,
将M($\sqrt{3}$,-$\frac{\sqrt{13}}{2}$)代入椭圆方程:$\frac{3}{{b}^{2}+12}$+$\frac{13}{4{b}^{2}}$=1,解得:b2=4,
则a2=16,
∴椭圆标准方程:$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$;
(2)直线l过点N(-8,0)与椭圆C交于A,B两点,且点N(-8,0)在椭圆外,
∴直线l的斜率存在且不为0,设直线l方程为:x=my-8(m≠0),
由椭圆方程可得点F1(-$2\sqrt{3}$,0),到直线l的距离d=$\frac{|-2\sqrt{3}+8|}{\sqrt{1+{m}^{2}}}$=$\frac{8-2\sqrt{3}}{\sqrt{1+{m}^{2}}}$,
联立$\left\{\begin{array}{l}{x=my-8}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,消去x整理得:(4+m2)y2-16my+48=0,
由△=256m2-192(4+m2)=64m2-768>0,
得m$<-2\sqrt{3}$或m$>2\sqrt{3}$.
设A(x1,y1)、B(x2、y2),则y1+y2=$\frac{16m}{4+{m}^{2}}$,y1y2=$\frac{48}{4+{m}^{2}}$,
∴|y1-y2|2=(y1+y22-4y1y2
=($\frac{16m}{4+{m}^{2}}$)2-4•$\frac{48}{4+{m}^{2}}$=$\frac{64({m}^{2}-12)}{(4+{m}^{2})^{2}}$,
∴|AB|2=(1+m2)(y1-y22=$(1+{m}^{2})•\frac{64({m}^{2}-12)}{({m}^{2}+4)^{2}}$,
∴|AB|=8•$\frac{\sqrt{(1+{m}^{2})({m}^{2}-12)}}{{m}^{2}+4}$,
∴${S}_{△AB{F}_{1}}$=$\frac{1}{2}$•d•|AB|=$\frac{1}{2}$•$\frac{8-2\sqrt{3}}{\sqrt{1+{m}^{2}}}$•8•$\frac{\sqrt{(1+{m}^{2})({m}^{2}-12)}}{{m}^{2}+4}$
=$(32-8\sqrt{3})•\frac{\sqrt{{m}^{2}-12}}{{m}^{2}+4}$,
记$\sqrt{{m}^{2}-12}=t$(t>0),则m2=t2+12.
∴${S}_{△AB{F}_{1}}$=$(32-8\sqrt{3})•\frac{t}{{t}^{2}+16}$=$\frac{32-8\sqrt{3}}{t+\frac{16}{t}}≤\frac{32-8\sqrt{3}}{2\sqrt{t•\frac{16}{t}}}=4-\sqrt{3}$.
当且仅当t=4,即m=$±2\sqrt{7}$时S的最大值为$4-\sqrt{3}$.

点评 本题是直线与圆锥曲线的综合题,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,正方形ABCD所在平面与圆O所在平面相交于CD,线段CD为圆O的弦,AE垂直于圆O所在平面,垂足E是圆O上异于点C、D的点,AE=3,圆O的直径为9.
(1)求证:平面ABCD⊥平面ADE;
(2)求DE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆C1:x2+y2+6x=0关于直线l1:y=2x+1对称的圆为C.
(1)求圆C的方程;
(2)过点(-1,0)作直线l与圆C交于A,B两点,O是坐标原点,是否存在这样的直线l,使得OA⊥OB.若存在,求出所有满足条件的直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,cosA=-$\frac{5}{13}$,sinB=$\frac{3}{5}$,则cosC=$\frac{56}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如2x+2-x=5,求4x+$\frac{1}{{4}^{x}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,四边形ABCD为矩形,AD⊥平面ABE,F为CE上的点,且BF⊥平面ACE
(Ⅰ)求证:AE⊥BE
(Ⅱ)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设$\overrightarrow a,\overrightarrow b$均为单位向量,其夹角为θ,有下列四个叙述:
①:$|\overrightarrow a+\overrightarrow b|>1?θ∈[0,\frac{2π}{3})$;
②:$|\overrightarrow a+\overrightarrow b|>1?θ∈(\frac{2π}{3},π]$
③:$|\overrightarrow a-\overrightarrow b|>1?θ∈[0,\frac{π}{3})$;
④:$|\overrightarrow a-\overrightarrow b|>1?θ∈(\frac{π}{3},π]$
其中叙述正确的是(  )
A.①④B.①③C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在平面四边形ABCD中,已知AB=CD=2,AD=1,BC=3,且∠BAD+∠BCD=180°,则△ABC的外接圆的面积为(  )
A.$\frac{13}{4}π$B.$\frac{9}{4}π$C.$\frac{5}{4}π$D.$\frac{7}{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=xln x.
(1)求f(x)的单调区间;
(2)若对所有的x≥1都有f(x)≥ax-1,求实数a的取值范围.

查看答案和解析>>

同步练习册答案