精英家教网 > 高中数学 > 题目详情
16.如图,四边形ABCD为矩形,AD⊥平面ABE,F为CE上的点,且BF⊥平面ACE
(Ⅰ)求证:AE⊥BE
(Ⅱ)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

分析 (Ⅰ)推导出BC⊥平面ABE,从而AE⊥BC,由BF⊥平面ACE,得AE⊥BF,从而AE⊥平面BCE,由此能证明AE⊥BE.
(Ⅱ)在三角形ABE中过M点作MG∥AE交BE于G点,在三角形BEC中过G点作GN∥BC交EC于N点,连MN,由比例关系得CN=$\frac{1}{3}$CE,推导出平面MGN∥平面ADE,由此能求出N点为线段CE上靠近C点的一个三等分点.

解答 证明:(Ⅰ)∵AD⊥平面ABE,AD∥BC
∴BC⊥平面ABE,∵AE?平面ABE,∴AE⊥BC,
又∵BF⊥平面ACE,AE?平面ACE,∴AE⊥BF,
∵BC∩BF=B,∴AE⊥平面BCE,
又BE?平面BCE,∴AE⊥BE.(6分)
解:(Ⅱ)在三角形ABE中过M点作MG∥AE交BE于G点,
在三角形BEC中过G点作GN∥BC交EC于N点,连MN,
则由比例关系得CN=$\frac{1}{3}$CE,
∵MG∥AE  MG?平面ADE,AE?平面ADE,∴MG∥平面ADE,
同理,GN∥平面ADE,∴平面MGN∥平面ADE,
又MN?平面MGN,∴MN∥平面ADE,
∴N点为线段CE上靠近C点的一个三等分点.(12分)

点评 本题考查线线垂直的证明,考查满足线面平行的点的位置的确定,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、空间想象能力,考查化归与转化思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.设a>0,b>0,若3a与3b的等比中项是$\sqrt{3}$,则$\frac{1}{a}$+$\frac{4}{b}$的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在这四个函数:①y=sin|x|、②y=|sinx|、③y=sin(2x+$\frac{2π}{3}$)、④y=tan(2x+$\frac{2π}{3}$)中,最小正周期为 π 的函数有(  )
A.①②③④B.①②③C.②③④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知F为抛物线y2=4x的焦点,点A,B在抛物线上且位于x轴的两侧,$\overrightarrow{OA}$•$\overrightarrow{OB}$=12(O为坐标原点),则△AFO与△BFO面积之和的最小值是2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,且|F1F2|=4$\sqrt{3}$,M($\sqrt{3}$,-$\frac{\sqrt{13}}{2}$)是椭圆上一点.
(1)求椭圆C的标准方程.
(2)过点N(-8,0)的直线与椭圆C相交于A,B两点,记△ABF1的面积为S,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.当x>1>y时,有x2-2xy+y2≥m[xy-(x+y)+1]恒成立,则实数m的取值范围为[-4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{ an}满足a1=a,an+1=$\frac{1}{2-{a}_{n-1}}$(n∈N*).
(1)求a2,a3,a4
(2)猜想数列{an}的通项公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.有7个灯泡排成一排,现要求至少点亮其中的3个灯泡,且相邻的灯泡不能同时点亮,则不同的点亮方法有(  )
A.11种B.21种C.120种D.126种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,A,B,C所对的边分别为a,b,c,若1+$\frac{tanA}{tanB}$+$\frac{2c}{b}$=0,则A=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{3π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

同步练习册答案