精英家教网 > 高中数学 > 题目详情
20.在平面四边形ABCD中,已知AB=CD=2,AD=1,BC=3,且∠BAD+∠BCD=180°,则△ABC的外接圆的面积为(  )
A.$\frac{13}{4}π$B.$\frac{9}{4}π$C.$\frac{5}{4}π$D.$\frac{7}{3}π$

分析 首先求出C,在求出AC,由$\frac{AC}{sin∠ABC}=2R$,∴$R=\sqrt{\frac{7}{3}}$,即可得△ABC的外接圆的面积.

解答 解:连结BD,
在△ABD中,BD2=AB2+AD2-2AB•ADcos∠BAD=5-4cos∠BAD,
在△BCD中,BD2=BC2+CD2-2BC•CDcos∠BCD=13-12cos∠BCD.
∴5-4cos∠BAD=13-12cos∠BCD,
∵∠BAD+∠BCD=180°,∴cos∠BAD=-cos∠BCD.
∴cos∠BAD=-$\frac{1}{2}$.                                                             
∴∠BAD=120°,∠BCD=60°
在△ADB中,由余弦定理得DB=$\sqrt{A{B}^{2}+A{D}^{2}-2AB•ADcosA}=\sqrt{7}$
cos$∠ABD=\frac{A{B}^{2}+B{D}^{2}-A{D}^{2}}{2AB•BD}=\frac{5\sqrt{7}}{14}$$>\frac{\sqrt{2}}{2}$,sin$∠ABD=\frac{\sqrt{21}}{14}$
cos$∠DBC=\frac{B{D}^{2}+B{C}^{2}-D{C}^{2}}{2BD•BC}=\frac{2\sqrt{7}}{7}$$>\frac{\sqrt{2}}{2}$,sin∠DBC=$\frac{\sqrt{21}}{7}$
∴sin∠ABC=sin(∠ABD+∠DBC)=sin∠ABDcos∠DBC+cos∠ABDsin∠DBC=$\frac{\sqrt{3}}{2}$,
且∠ABC<900,∴$cos∠ABC=\frac{1}{2}$
由余弦定理得AC=$\sqrt{A{B}^{2}+B{C}^{2}-2AB•BCcos∠ABC}$=$\sqrt{7}$
$\frac{AC}{sin∠ABC}=2R$,∴$R=\sqrt{\frac{7}{3}}$,则△ABC的外接圆的面积为$π×(\sqrt{\frac{7}{3}})^{2}=\frac{7}{3}π$
故选:D

点评 本题考查了三角恒等变形、正余弦定理,考查了计算能力、转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.(1)求C${\;}_{n+1}^{m}$÷(C${\;}_{n}^{m}$+C${\;}_{n}^{m-1}$)(m,n∈N*)的值.
(2)用数学归纳法证明二项式定理:(a+b)n=C${\;}_{n}^{0}$an+C${\;}_{n}^{1}$an-1b+…+C${\;}_{n}^{r}$an-rbr+…+C${\;}_{n}^{n}$bn(n∈N*,r∈N,0≤r≤n).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,且|F1F2|=4$\sqrt{3}$,M($\sqrt{3}$,-$\frac{\sqrt{13}}{2}$)是椭圆上一点.
(1)求椭圆C的标准方程.
(2)过点N(-8,0)的直线与椭圆C相交于A,B两点,记△ABF1的面积为S,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{ an}满足a1=a,an+1=$\frac{1}{2-{a}_{n-1}}$(n∈N*).
(1)求a2,a3,a4
(2)猜想数列{an}的通项公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.对于a,b∈(0,+∞),a+b≥2$\sqrt{ab}$(大前提),$x+\frac{1}{x}≥2\sqrt{x•\frac{1}{x}}$(小前提),所以$x+\frac{1}{x}≥2$(结论).以上推理过程中的错误为(  )
A.大前提B.小前提C.结论D.无错误

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.有7个灯泡排成一排,现要求至少点亮其中的3个灯泡,且相邻的灯泡不能同时点亮,则不同的点亮方法有(  )
A.11种B.21种C.120种D.126种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.两个变量y与x的回归模型中,分别计算了4组数据的相关系数r如下,其中拟合效果最好的是(  )
组别第一组第二组第三组第四组
相关系数r-0.980.800.50-0.25
A.第一组B.第二组C.第三组D.第四组

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在数列{an}中,${a_1}=3,{a_n}=\sqrt{{a_{n-1}}^s+t(n)},{b_n}={a_n}+2$,n=2,3,….
(1)若s=2,t(n)=n时,求数列{an}的通项公式;
(2)若s=1,t(n)=2时,求a2,a3,判断数列{an}的单调性并证明;
(3)在(2)的条件下,是否存在常数M,对任意n≥2,有b2b3…bn≤M?若存在,求出M的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如果a>b,则下列不等式正确的是(  )
A.$\frac{1}{a}>\frac{1}{b}$B.2a>2bC.|a|>|b|D.a2>b2

查看答案和解析>>

同步练习册答案