精英家教网 > 高中数学 > 题目详情
6.已知函数$f(x)=\left\{\begin{array}{l}2-|{lnx}|,x>0\\{({x+2})^2},x≤0\end{array}\right.$,若函数y=f(x)+b(其中b∈R)恰有3个零点,则b的取值范围是{-2,0}.

分析 画出函数的图象,利用数形结合求解b的取值范围.

解答 解:函数y=f(x)+b(其中b∈R)恰有3个零点,就是函数y=f(x)与y=-b有3个交点,
在同一个坐标系中画出函数的图象如图,
满足题意的b为:0,-2,
则b的取值范围是:{-2,0}.

点评 本题考查函数的图象的应用,函数的零点个数的判断,考查数形结合以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知样本x1,x2,x3,…,xn的方差是2,则样本3x1+2,3x2+2,3x3+2,…,3xn+2的标准差为3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且$4{S_n}=a_n^2+2{a_n}-3$.
(1)求数列{an}的通项公式;
(2)已知${b_n}={2^n}$,求数列{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)是R上的奇函数,且在(0,+∞)上有f'(x)>0,若f(-1)=0,那么关于x的不等式xf(x)<0的解集是(-1,0)∪(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆E:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1,求E的焦距、离心率和通径的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若关于x的方程x3-3x+m=0在[0,2]上有两个根,则实数m的取值范围为(  )
A.[0,2)B.[-2,2)C.(-2,0]D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在某次试验中,有两个试验数据x,y统计的结果如下面的表格
序号xyx2xy
11212
22346
334912
4441616
5552525
15185561
(1)求出y对x的回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中回归系数$\stackrel{∧}{a}$,$\stackrel{∧}{b}$;
(2)估计当x为10时$\stackrel{∧}{y}$的值是多少?
(附:在线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{{{\sum_{i=1}^n{x_i^2-n\overline x}}^2}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知二次函数f(x)=x2+bx+c的两个零点分别在区间(-2,-1)和(-1,0)内,则f(3)的取值范围是(  )
A.(12,20)B.(12,18)C.(18,20)D.(8,18)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若x+x11=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10+a11(x+1)11,则a10的值为(  )
A.10B.-10C.-11D.11

查看答案和解析>>

同步练习册答案