精英家教网 > 高中数学 > 题目详情
16.若x+x11=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10+a11(x+1)11,则a10的值为(  )
A.10B.-10C.-11D.11

分析 由x+x11=[(x+1)-1]+[(x+1)-1]11
利用二项式展开式的通项公式求出a10的值.

解答 解:x+x11=[(x+1)-1]+[(x+1)-1]11
=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10+a11(x+1)11
则a10的值为${C}_{11}^{1}$•(-1)=-11.
故选:C.

点评 本题考查二项式定理,对原式进行恰当变形是解决问题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知函数$f(x)=\left\{\begin{array}{l}2-|{lnx}|,x>0\\{({x+2})^2},x≤0\end{array}\right.$,若函数y=f(x)+b(其中b∈R)恰有3个零点,则b的取值范围是{-2,0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an}满足a1=1,a2=1,an+1=|an-an-1|(n≥2),则该数列前2017项的和等于(  )
A.1342B.1343C.1344D.1345

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若不等式x2+ax+2≥0对一切x∈$({0,\frac{1}{2}}]$成立,则a的最小值为(  )
A.$-\frac{9}{2}$B.-2C.-$\frac{5}{2}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设函数f(x)=|2x+2|+|2x-3|.
(1)求不等式f(x)>7 的解集;
(2)若关于x的不等式f(x)≤|3m-2|有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.从0,1,2,3,4,5这6个数字中任意取4个数字组成一个没有重复数字的四位数,这个数不能被3整除的概率为(  )
A.$\frac{17}{25}$B.$\frac{14}{25}$C.$\frac{12}{25}$D.$\frac{8}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.y=2sin($\frac{π}{6}x+\frac{π}{3}$)-$\frac{2}{9}x$+$\frac{8}{9}$在x∈R上有零点,记作x1,x2,…xn,求x1+x2+…+xn=(  )
A.16B.12C.20D.-32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\sqrt{3}$sinxcosx的图象与函数g(x)=3sin2x-λ(λ∈R)的图象在$[{-\frac{π}{4},\frac{π}{2}}]$上有两个交点,则实数λ的取值范围是(  )
A.$(\frac{{3-2\sqrt{3}}}{2},0]$B.$(\frac{{3-2\sqrt{3}}}{2},3]$C.$(\frac{{3-2\sqrt{3}}}{2},\frac{{3+2\sqrt{3}}}{2}]$D.$(\frac{{3-2\sqrt{3}}}{2},\frac{{3+2\sqrt{3}}}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.计算(用数字作答):${C}_{3}^{2}$+${C}_{4}^{2}$+${C}_{5}^{2}$+…+${C}_{19}^{2}$=1139.

查看答案和解析>>

同步练习册答案