精英家教网 > 高中数学 > 题目详情
8.y=2sin($\frac{π}{6}x+\frac{π}{3}$)-$\frac{2}{9}x$+$\frac{8}{9}$在x∈R上有零点,记作x1,x2,…xn,求x1+x2+…+xn=(  )
A.16B.12C.20D.-32

分析 根据函数y有零点,令y=0,即2sin($\frac{π}{6}x+\frac{π}{3}$)=$\frac{2}{9}x$-$\frac{8}{9}$,转化为函数f(x)=sin($\frac{π}{6}x+\frac{π}{3}$)与y=$\frac{1}{9}x$-$\frac{4}{9}$图象的交点问题.利用图象即可求解.

解答 解:由题意,函数y有零点,令y=0,即2sin($\frac{π}{6}x+\frac{π}{3}$)=$\frac{2}{9}x$-$\frac{8}{9}$,
转化为函数f(x)=sin($\frac{π}{6}x+\frac{π}{3}$)与g(x)=$\frac{1}{9}x$-$\frac{4}{9}$图象的交点问题.
函数f(x)的周期T=12.

从图象可以看出,函数f(x)与g(x)只有3个交点.
即函数y=2sin($\frac{π}{6}x+\frac{π}{3}$)-$\frac{2}{9}x$+$\frac{8}{9}$只有3个零点,
∴x1=-5,x2=4,x3=13,
那么:x1+x2+x3=12.
故选:B.

点评 本题考查了三角函数的零点问题,转化两个函数图象的交点问题,考查了转化思想,作图能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在某次试验中,有两个试验数据x,y统计的结果如下面的表格
序号xyx2xy
11212
22346
334912
4441616
5552525
15185561
(1)求出y对x的回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中回归系数$\stackrel{∧}{a}$,$\stackrel{∧}{b}$;
(2)估计当x为10时$\stackrel{∧}{y}$的值是多少?
(附:在线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{{{\sum_{i=1}^n{x_i^2-n\overline x}}^2}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下列函数的导数
(Ⅰ)y=$\frac{{e}^{x}+1}{{e}^{x}-1}$    
(Ⅱ)$\begin{array}{l}y=cos({x^2}+2x+3)\end{array}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若x+x11=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10+a11(x+1)11,则a10的值为(  )
A.10B.-10C.-11D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.一盒中放有的黑球和白球,其中黑球4个,白球5个.
(Ⅰ)从盒中同时摸出两个球,求两球颜色恰好相同的概率.
(Ⅱ)从盒中摸出一个球,放回后再摸出一个球,求两球颜色恰好不同的概率.
(Ⅲ)从盒中不放回的每次摸一球,若取到白球则停止摸球,求取到第三次时停止摸球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知递增的等差数列{an}中,a1a6=11,a3+a4=12,则数列{an}前10项的和为S10=100.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设复数$z=\frac{2i}{cos120°+isin120°}$,则|z|=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知$sinα+cosα=\frac{1}{5},0<α<π$,
(1)求tanα;
(2)求sin2α+sinαcosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为01.
7816    6572    0802    6314    0702    4369    9728    0198
3204    9234    4935    8200    3623    4869    6938    7481.

查看答案和解析>>

同步练习册答案