精英家教网 > 高中数学 > 题目详情
19.求下列函数的导数
(Ⅰ)y=$\frac{{e}^{x}+1}{{e}^{x}-1}$    
(Ⅱ)$\begin{array}{l}y=cos({x^2}+2x+3)\end{array}$.

分析 分别根据导数的运算法则和复合函数的求导法则计算即可

解答 解:(Ⅰ)y=$\frac{{e}^{x}+1}{{e}^{x}-1}$,则y=1+$\frac{2}{{e}^{x}-1}$,则y′=-$\frac{2{e}^{x}}{({e}^{x}-1)^{2}}$
(Ⅱ)$\begin{array}{l}y=cos({x^2}+2x+3)\end{array}$,则y′=-sin(x2+2x+3)•(x2+2x+3)′=-(2x+2)sin(x2+2x+3)

点评 本题考查了复合函数的求导法则和导数的运算法则,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.为做好2022年北京冬季奥运会的宣传工作,组委会计划从某大学选取若干大学生志愿者,某记者在该大学随机调查了300名大学生,以了解他们是否愿意做志愿者工作,得到的数据如表所示:
愿意做志愿者工作不愿意做志愿者工作合计
男大学生180
女大学生45
合计200
(Ⅰ)根据题意完成表格;
(Ⅱ)是否有90%的把握认为愿意做志愿者工作与性别有关?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
P(K2≥k)0.50.400.250.150.10
k00.4550.7081.3232.0722.706

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.有3台设备,每台正常工作的概率均为0.9,则至少有2台能正常工作的概率为0.972.(用小数作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an}满足a1=1,a2=1,an+1=|an-an-1|(n≥2),则该数列前2017项的和等于(  )
A.1342B.1343C.1344D.1345

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线(2m-1)x-(m+3)y-(m-11)=0恒过定点
(1)求此定点坐标.
(2)若直线的图象经过一、三、四象限,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若不等式x2+ax+2≥0对一切x∈$({0,\frac{1}{2}}]$成立,则a的最小值为(  )
A.$-\frac{9}{2}$B.-2C.-$\frac{5}{2}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设函数f(x)=|2x+2|+|2x-3|.
(1)求不等式f(x)>7 的解集;
(2)若关于x的不等式f(x)≤|3m-2|有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.y=2sin($\frac{π}{6}x+\frac{π}{3}$)-$\frac{2}{9}x$+$\frac{8}{9}$在x∈R上有零点,记作x1,x2,…xn,求x1+x2+…+xn=(  )
A.16B.12C.20D.-32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列图象中,能够作为函数y=f(x)的图象的有(  )
A.①④B.②③C.①③D.②④

查看答案和解析>>

同步练习册答案