精英家教网 > 高中数学 > 题目详情
9.为做好2022年北京冬季奥运会的宣传工作,组委会计划从某大学选取若干大学生志愿者,某记者在该大学随机调查了300名大学生,以了解他们是否愿意做志愿者工作,得到的数据如表所示:
愿意做志愿者工作不愿意做志愿者工作合计
男大学生180
女大学生45
合计200
(Ⅰ)根据题意完成表格;
(Ⅱ)是否有90%的把握认为愿意做志愿者工作与性别有关?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
P(K2≥k)0.50.400.250.150.10
k00.4550.7081.3232.0722.706

分析 (Ⅰ)根据题意,计算女大学生的人数,填写列联表即可;
(Ⅱ)根据表中数据,计算K2的观测值,对照临界值得出结论.

解答 解:(Ⅰ)根据表中数据,计算女大学生为300-180=120,
填写列联表如下;

愿意做志愿者工作不愿意做志愿者工作合计
男大学生12555180
女大学生7545120
合计200100300
(Ⅱ)根据表中数据,计算K2的观测值
$k=\frac{{300×{{(125×45-55×75)}^2}}}{180×120×200×100}≈1.563<2.706$,
对照临界值得:没有90%的把握认为愿意做志愿者工作与性别有关.

点评 本题考查了列联表与独立性检验的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知α,β为平面,a,b,c为直线,下列命题正确的是(  )
A.若a⊆α,b∥a,则b∥αB.若α⊥β,α∩β=c,b⊥c,则b⊥β
C.若a⊥b,b⊥c,则a∥cD.若a∩b=A,a⊆α,b⊆α,a∥β,b∥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,假设每局比赛中,甲胜乙的概率为$\frac{1}{2}$,甲胜丙、乙胜丙的概率都为$\frac{2}{3}$,各局比赛的结果都相互独立,第1局甲当裁判.
(Ⅰ)求第三局甲当裁判的概率;
(Ⅱ)记前4局中乙当裁判的次数为X,求X的概率分布与数学期望;
(Ⅲ)已知第三局甲当裁判,求前4局中乙当裁判的次数恰好为1次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且$4{S_n}=a_n^2+2{a_n}-3$.
(1)求数列{an}的通项公式;
(2)已知${b_n}={2^n}$,求数列{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f'(x)是函数f(x)(x∈R且x≠0)的导函数,当x>0时,xf'(x)-f(x)<0,记a=$\frac{{f({{2^{0.2}}})}}{{{2^{0.2}}}},b=\frac{{f({{{0.2}^2}})}}{{{{0.2}^2}}},c=\frac{{f({{{log}_2}5})}}{{{{log}_2}5}}$,则(  )
A.a<b<cB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)是R上的奇函数,且在(0,+∞)上有f'(x)>0,若f(-1)=0,那么关于x的不等式xf(x)<0的解集是(-1,0)∪(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆E:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1,求E的焦距、离心率和通径的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在某次试验中,有两个试验数据x,y统计的结果如下面的表格
序号xyx2xy
11212
22346
334912
4441616
5552525
15185561
(1)求出y对x的回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中回归系数$\stackrel{∧}{a}$,$\stackrel{∧}{b}$;
(2)估计当x为10时$\stackrel{∧}{y}$的值是多少?
(附:在线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{{{\sum_{i=1}^n{x_i^2-n\overline x}}^2}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下列函数的导数
(Ⅰ)y=$\frac{{e}^{x}+1}{{e}^{x}-1}$    
(Ⅱ)$\begin{array}{l}y=cos({x^2}+2x+3)\end{array}$.

查看答案和解析>>

同步练习册答案