精英家教网 > 高中数学 > 题目详情
5.如图,在长方体ABCD-A1B1C1D1中,点E在棱CC1的延长线上,且CC1=C1E=BC=$\frac{1}{2}$AB=1.
(1)求D1E的中点F到平面ACB1的距离;
(2)求证:平面D1B1E⊥平面DCB1

分析 (1)连接AD1、BC1,可得四边形AB1ED1是平行四边形,即D1E∥平面ACB1,可得点F到平面ACB1的距离等于点E到平面ACB1的距离,由${V_{E-AC{B_1}}}={V_{A-{B_1}CE}}$,得D1E的中点F到平面ACB1的距离.
(2)由已知得,${B_1}{C^2}+{B_1}{E^2}=4=C{E^2}$,则B1E⊥B1C,CD⊥B1E,即B1E⊥平面DCB1,又B1E?平面D1B1E,即可得平面D1B1E⊥平面DCB1

解答 证明:(1)连接AD1、BC1,∵$A{D_1}\underline{\underline{∥}}B{C_1}\underline{\underline{∥}}{B_1}E$,
∴四边形AB1ED1是平行四边形,
∴D1E∥AB1,又AB1?平面AB1C,D1E?平面AB1C,
∴D1E∥平面ACB1
∴点F到平面ACB1的距离等于点E到平面ACB1的距离,由${V_{E-AC{B_1}}}={V_{A-{B_1}CE}}$,
得$\frac{1}{3}{S_{△AC{B_1}}}•h=\frac{1}{3}×\frac{1}{2}×1×2×2$,又易知${S_{△AC{B_1}}}=\frac{3}{2}$.
∴D1E的中点F到平面ACB1的距离为$h=\frac{4}{3}$.
(2)由已知得,${B_1}{C^2}+{B_1}{E^2}=4=C{E^2}$,则B1E⊥B1C,
由长方体的特征可知CD⊥平面B1BCE,
而B1E?平面B1BCE,所以CD⊥B1E,
∴B1E⊥平面DCB1,又B1E?平面D1B1E,
∴平面D1B1E⊥平面DCB1

点评 本题考查了空间线面、面面位置关系,点面距离,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.(1)若函数f(x)=x3+bx2+cx+d的单调递减区间(-1,2)求b,c的值;
(2)设$f(x)=-\frac{1}{3}{x^3}+\frac{1}{2}{x^2}+2ax$,若f(x)在$(\frac{2}{3},+∞)$上存在单调递增区间,求a的取值范围;
(3)已知函数f(x)=alnx-ax-3(a∈R),若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意t∈[1,2],函数g(x)=x3+x2[f′(x)+$\frac{m}{2}$]在区间(t,3)上总不是单调函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知i为虚数单位,复数z满足z(1+i)=1,则z的共轭复数$\overline{z}$=(  )
A.$\frac{1}{2}+\frac{1}{2}i$B.$\frac{1}{2}-\frac{1}{2}i$C.$-\frac{1}{2}+\frac{1}{2}i$D.$-\frac{1}{2}-\frac{1}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若复数(a+i)(1+i)(a为实数,i为虚数单位)是纯虚数,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{ax}{{e}^{x-1}}$(a∈R),g(x)=$\frac{b}{{e}^{x}}$+$\frac{{e}^{-1}}{2x+{e}^{x}}$(b∈R),其中e为自然对数的底数.(参考数据:e2≈7.39,e${\;}^{\frac{1}{4}}$≈1.28,e${\;}^{\frac{1}{2}}$≈1.65)
(1)讨论函数f(x)的单调性;
(2)若a=1时,函数y=f(2x)+g(x)有三个零点,分别记为x1、x2、x3(x1<x2<x3),证明:-2<4(x1+x2)<3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.集合A={x|x(2-x)>0},B={x|x-1≥0},则集合A∪B=(  )
A.{x|1≤x<2}B.{x|x>2}C.{x|x≥1或x<0}D.{x|x>0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=(x+a)lnx在x=1处的切线方程为y=x-1.
(Ⅰ)求a的值及f(x)的单调区间;
(Ⅱ)记函数y=F(x)的图象为曲线C,设点A(x1,y1),B(x2,y2)是曲线C上不同的两点,如果在曲线C上存在点M(x0,y0),使得①x0=$\frac{{x}_{1}+{x}_{2}}{2}$;②曲线C在点M处的切线平行于直线AB,则称函数F(x)存在“中值相依切线”.试证明:函数f(x)不存在“中值相依切线”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}中,a1=1,且${a_n}=\frac{n}{n-1}{a_{n-1}}+2n•{3^{n-2}}({n≥2,n∈{N^*}})$.
(1)求a2,a3的值及数列{an}的通项公式;
(2)令${b_n}=\frac{{{3^{n-1}}}}{a_n}({n∈{N^*}})$,设数列{bn}的前n项和为Sn,求Sn并比较${S_{2^n}}$与n的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,四棱锥中P-ABCD,PA⊥平面ABCD,∠PDA=30°,O,E,F分别是AC,AB,PC的中点.
(1)证明;平面EFO∥平面PAD;
(2)证明:FO⊥平面ABCD;
(3)求EF与平面ABCD所成角的大小.

查看答案和解析>>

同步练习册答案