精英家教网 > 高中数学 > 题目详情
11.已知(x+$\frac{a}{x}$)n(n∈N,n>5)展开式的第5项是70,则展开式各项系数和是(  )
A.1B.-1C.28或0D.29或0

分析 根据二项式的展开式通项公式,求出展开式中r,n的值,再求出展开式各项系数和.

解答 解(x+$\frac{a}{x}$)n(n∈N,n>5)展开式中,通项公式为Tr+1=ar•Cnr•xn-2r
∵展开式的第5项是70,
∴r=4,
∴n-2×4=0,即n=8
即a4•C84=70,
解得a=±1,
当a=1时,令x=1,(x+$\frac{1}{x}$)8展开式各项系数和28
当a=-1时,令x=1,(x-$\frac{1}{x}$)8展开式各项系数和0,
故选:C

点评 本题考查了二项式定理的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.下列说法正确的是(  )
A.命题:“若x2-3x+2=0,则x=2”的否命题为假命题
B.命题”存在x≥0,使2x=5”的否定为”对任意x<0,都有2x≠5”
C.若p且q为假命题,则p、q均为假命题
D.“a=0”是“复数a+bi(a,b∈R)为纯虚数”的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.不等式$\frac{2}{x+1}≥x$的解集是(  )
A.{x|-2≤x<-1或x≥1}B.{x|x≤-2或-1≤x<1}C.{x|x≤-2或-1<x≤1}D.{x|x≤-2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若向量$\overrightarrow a=(-3,2)$,$\overrightarrow b=(-1,0)$,向量$λ\overrightarrow a+\overrightarrow b$与$\overrightarrow a-2\overrightarrow b$垂直,则λ等于(  )
A.$-\frac{1}{7}$B.$\frac{1}{7}$C.$-\frac{1}{6}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合M={x|x2-2x>0},集合N={0,1,2,3,4},则M∩N等于(  )
A.{4}B.{3,4}C.{0,1,2}D.{0,1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xoy中,圆的参数方程为$\left\{\begin{array}{l}x=2+cosφ\\ y=2\sqrt{3}+sinφ\end{array}\right.$(φ为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,直线l的极坐标方程为$\sqrt{3}ρcosθ+3ρsinθ+4\sqrt{3}=0$.
(1)将圆的参数方程化为普通方程,在化为极坐标方程;
(2)若点P在直线l上,当点P到圆的距离最小时,求点P的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知sin(α+$\frac{π}{3}$)=$\frac{3}{5}$,则cos($\frac{π}{6}$-α)的值是(  )
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若△ABC的三边之比为3:5:7,则这个三角形较大的锐角的余弦值为(  )
A.$-\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{13}{14}$D.$\frac{11}{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和Sn=n2+2n.
(1)求数列{an}的通项公式;
(2)若数列$\left\{{\frac{a_n}{2^n}}\right\}$的前n项和为Tn,证明:$\frac{3}{2}≤{T_n}$<5.

查看答案和解析>>

同步练习册答案