精英家教网 > 高中数学 > 题目详情
13.已知实数x,y满足x2+(y-2)2=1,则$\frac{x+\sqrt{3}y}{\sqrt{{x}^{2}+{y}^{2}}}$的取值范围是(  )
A.($\sqrt{3}$,2]B.[1,2]C.(0,2]D.($\frac{\sqrt{3}}{2}$,1]

分析 构造直线x+$\sqrt{3}$y=0,过圆上一点P作直线的垂线PM,则$\frac{x+\sqrt{3}y}{\sqrt{{x}^{2}+{y}^{2}}}$=2sin∠POM,求出∠POM的范围即可得出答案.

解答 解:设P(x,y)为圆x2+(y-2)2=1上的任意一点,
则P到直线x+$\sqrt{3}$y=0的距离PM=$\frac{x+\sqrt{3}y}{2}$,P到原点的距离OP=$\sqrt{{x}^{2}+{y}^{2}}$,
∴$\frac{x+\sqrt{3}y}{\sqrt{{x}^{2}+{y}^{2}}}$=$\frac{2PM}{OP}$=2sin∠POM.
设圆x2+(y-2)2=1与直线y=kx相切,则$\frac{2}{\sqrt{{k}^{2}+1}}=1$,解得k=±$\sqrt{3}$,
∴∠POM的最小值为30°,最大值为90°,
∴$\frac{1}{2}$≤sin∠POM≤1,
∴1≤2sin∠POM≤2.
故选:B.

点评 本题考查了直线与圆的位置关系,距离公式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知A、B是过抛物线y2=2px(p>0)焦点F的直线与抛物线的交点,O是坐标原点,且满足AB=3FB,S△OAB=$\frac{{\sqrt{2}}}{3}$AB,则AB的值为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)的图象如图所示,设f'(x)是f(x)的导函数,若0<a<b,下列各式成立的是(  )
A.$f'({\frac{2ab}{a+b}})<f'({\frac{a+b}{2}})<f'({\sqrt{ab}})$B.$f'({\frac{2ab}{a+b}})<f'({\sqrt{ab}})<f'({\frac{a+b}{2}})$
C.$f'({\frac{a+b}{2}})<f'({\frac{2ab}{a+b}})<f'({\sqrt{ab}})$D.$f'({\frac{a+b}{2}})<f'({\sqrt{ab}})<f'({\frac{2ab}{a+b}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在三角形ABC中,内角A,B,C满足cos2B-cos2C-sin2A=sinAsinB,则C=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知△ABC的三个顶点A,B,C及△ABC所在平面内一点G,若$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow 0$,且实数λ满足$\overrightarrow{AB}+\overrightarrow{AC}=λ\overrightarrow{AG}$,则λ=(  )
A.$\frac{3}{2}$B.3C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.P(cosθ,2tanθ)位于第三象限,则么角θ所在象限是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.有一段演绎推理是这样的:“直线平行于平面,则此直线平行于平面内的所有直线;已知直线b∥平面α,直线a?平面α,则直线b∥直线a”.结论显然是错误的,这是因为(1).
(1)大前提错误    (2)推理形式错误     (3)小前提错误     (4)以上都错误.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和为Sn,a1=1且an+1=2Sn+1(n∈N*);
数列{bn}中,b1=3且对n∈N*,点(bn,bn+1)都在函数y=x+2的图象上.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)是否存在正整数n,使得a1b1+a2b2+…+anbn>100n?若存在,求n的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若tanα=4的值,则$\frac{{sin(π-α)-sin(\frac{π}{2}+α)}}{cos(-α)}$=3.

查看答案和解析>>

同步练习册答案