精英家教网 > 高中数学 > 题目详情
19.(1)已知椭圆方程为$\frac{x^2}{4}+\frac{y^2}{3}$=1,点$P(0,\sqrt{3})$.
i.若关于原点对称的两点A1(-2,0),B1(2,0),记直线PA1,PB1的斜率分别为${k_{P{A_1}}},{k_{P{B_1}}}$,试计算${k_{P{A_1}}}•{k_{P{B_1}}}$的值;
ii.若关于原点对称的两点${A_2}(\sqrt{3},\frac{{\sqrt{3}}}{2}),{B_2}(-\sqrt{3},-\frac{{\sqrt{3}}}{2})$,记直线PA2,PB2的斜率分别为${k_{P{A_2}}},{k_{P{B_2}}}$,试计算${k_{P{A_2}}}•{k_{P{B_2}}}$的值;
(2)根据上题结论探究:若M,N是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上关于原点对称的两点,点Q是椭圆上任意一点,且直线QM,QN的斜率都存在,并分别记为kQM,kQN,试猜想kQM•kQN的值,并加以证明.

分析 (1)i.求出直线PA1,PB1的斜率分别为${k_{P{A_1}}},{k_{P{B_1}}}$,计算${k_{P{A_1}}}•{k_{P{B_1}}}$求解即可.
ii.求解直线PA2,PB2的斜率分别为${k_{P{A_2}}},{k_{P{B_2}}}$,然后求解${k_{P{A_2}}}•{k_{P{B_2}}}$的值即可.
(2)猜想${k_{QM}}•{k_{QN}}=-\frac{b^2}{a^2}$,设点M(m,n),则点N(-m,-n),从而$\frac{m^2}{a^2}+\frac{n^2}{b^2}=1$,设点Q(x,y),求出斜率,然后代入化简求解即可.

解答 解:(1)i.因为${k_{P{A_1}}}=\frac{{\sqrt{3}-0}}{0+2}=\frac{{\sqrt{3}}}{2},{k_{P{B_1}}}=\frac{{\sqrt{3}-0}}{0-2}=-\frac{{\sqrt{3}}}{2}$,
所以${k_{P{A_1}}}•{k_{P{B_1}}}=\frac{{\sqrt{3}}}{2}×(-\frac{{\sqrt{3}}}{2})=-\frac{3}{4}$….(3分)
ii.因为${k_{P{A_2}}}=\frac{{\sqrt{3}-\frac{{\sqrt{3}}}{2}}}{{0-\sqrt{3}}}=-\frac{1}{2},{k_{P{B_2}}}=\frac{{\sqrt{3}+\frac{{\sqrt{3}}}{2}}}{{0+\sqrt{3}}}=\frac{3}{2}$,
所以${k_{P{A_2}}}•{k_{P{B_2}}}=-\frac{1}{2}×\frac{3}{2}=-\frac{3}{4}$…..(6分)
(2)猜想${k_{QM}}•{k_{QN}}=-\frac{b^2}{a^2}$…..…(8分)
证明:设点M(m,n),则点N(-m,-n),从而$\frac{m^2}{a^2}+\frac{n^2}{b^2}=1$,设点Q(x,y),
由${k_{QM}}=\frac{y-n}{x-m},{k_{QN}}=\frac{y+n}{x+m}$,…(10分)
得${k_{QM}}•{k_{QN}}=\frac{y-n}{x-m}•\frac{y+n}{x+m}=\frac{{{y^2}-{n^2}}}{{{x^2}-{m^2}}}$,(*)
由${y^2}={b^2}-\frac{{{b^2}{x^2}}}{a^2}$,${n^2}={b^2}-\frac{{{b^2}{m^2}}}{a^2}$,…..…(12分)
代入(*)式得${k_{QM}}•{k_{QN}}=\frac{{{b^2}-\frac{{{b^2}{x^2}}}{a^2}-{b^2}+\frac{{{b^2}{m^2}}}{a^2}}}{{{x^2}-{m^2}}}=\frac{{{b^2}({m^2}-{x^2})}}{{{a^2}({x^2}-{m^2})}}=-\frac{b^2}{a^2}$
所以${k_{QM}}•{k_{QN}}=-\frac{b^2}{a^2}$…(16分)

点评 本题考查直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.函数$f(x)={cos^2}(ωx-\frac{π}{6})-{cos^2}ωx$,其中ω>0,它的最小正周期π.
(Ⅰ)求f(x)的解析式;
(Ⅱ)将y=f(x)的图象先向右平移$\frac{π}{4}$个单位,再将图象上所有点的横坐标变为原来的$\frac{1}{2}$,纵坐标变为原来的2倍,所得到的图象对应的函数记为g(x),求g(x)在区间$[{-\frac{π}{24},\frac{π}{4}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}的前n项和Sn,且满足Sn-Sn-1+2SnSn-1=0(n≥2),a1=$\frac{1}{2}$,则Sn=$\frac{1}{2n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数$y=\sqrt{{{log}_{\frac{1}{2}}}({x^2}-2)}$的定义域是(  )
A.[-$\sqrt{3}$,$\sqrt{3}$]B.[-$\sqrt{3}$,-$\sqrt{2}$)∪($\sqrt{2}$,$\sqrt{3}$)C.[-3,-1)∪(1,3]D.[-$\sqrt{3}$,-$\sqrt{2}$)∪($\sqrt{2}$,$\sqrt{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.数列$\frac{1}{2},\frac{1}{6},\frac{1}{12},\frac{1}{20},…$的一个通项公式是(  )
A.${a_n}=\frac{1}{n(n-1)}$B.${a_n}=\frac{1}{2n(2n-1)}$C.${a_n}=\frac{1}{n}-\frac{1}{n+1}$D.${a_n}=1-\frac{1}{n}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)求C${\;}_{n+1}^{m}$÷(C${\;}_{n}^{m}$+C${\;}_{n}^{m-1}$)(m,n∈N*)的值.
(2)用数学归纳法证明二项式定理:(a+b)n=C${\;}_{n}^{0}$an+C${\;}_{n}^{1}$an-1b+…+C${\;}_{n}^{r}$an-rbr+…+C${\;}_{n}^{n}$bn(n∈N*,r∈N,0≤r≤n).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在正方体ABCD-A1B1C1D1中,E、F分别为棱BB1和DD1的中点,M为棱DC的中点.
(1)求证:平面FB1C1∥平面ADE;
(2)求证:D1M⊥平面ADE;
(3)求二面角A1-DE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知点A(1,2),B(-2,3),则$|{\overrightarrow{AB}}|$=$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.对于a,b∈(0,+∞),a+b≥2$\sqrt{ab}$(大前提),$x+\frac{1}{x}≥2\sqrt{x•\frac{1}{x}}$(小前提),所以$x+\frac{1}{x}≥2$(结论).以上推理过程中的错误为(  )
A.大前提B.小前提C.结论D.无错误

查看答案和解析>>

同步练习册答案