精英家教网 > 高中数学 > 题目详情
7.已知椭圆E的中心为原点坐标,离心率为$\frac{{\sqrt{3}}}{2}$,E的右焦点与抛物线C:y2=12x的焦点重合,则椭圆E的方程为$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{3}$=1.

分析 由题意可设椭圆E的标准方程为:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0).抛物线C:y2=12x的焦点为(3,0),可得c=3,又$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,a2=b2+c2,联立解出a、b即可得出.

解答 解:由题意可设椭圆E的标准方程为:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0).
抛物线C:y2=12x的焦点为(3,0),
∴c=3,又$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,a2=b2+c2
联立解得:a=2$\sqrt{3}$,b=$\sqrt{3}$.
∴椭圆E的标准方程为:$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{3}$=1.
故答案为:$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{3}$=1.

点评 本题考查了椭圆与抛物线的标准方程及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知数列中,a1=1,an=$\frac{1}{{{a_{n-1}}+1}}$(n>1),则a3=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列点在曲线$\left\{\begin{array}{l}x=sin2θ\\ y=cosθ+sinθ\end{array}\right.$(θ为参数)上的有(  )个
①($\frac{1}{2},-\sqrt{2}$) ②$(-\frac{3}{4},\frac{1}{2})$③($2,\sqrt{3}$) ④($1,\sqrt{3}$)⑤(3,2)
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数 f(x)=x2-2x,(x∈[-2,4])的减区间[-2,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.根据市场调查,某商品在最近的40天内的价格f(t)与时间t满足关系f(t)=$\left\{\begin{array}{l}{t+20,0≤t<20,t∈N}\\{-t+42,20≤t≤40,t∈N}\end{array}\right.$,销售量g(t)与时间t满足关系g(t)=-t+50(0≤t≤40,t∈N),设商品的日销售额为F(t)(销售量与价格之积).求:
(1)商品的日销售额F(t)的解析式;
(2)商品的日销售额F(t)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设正数a,b满足log2a=log3b,给出下列五个结论,其中不可能成立的结论的序号是④⑤.
①1<a<b;   ②0<b<a<1;   ③a=b;    ④1<b<a;  ⑤0<a<b<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列说法之和正确的序号是:②④.
①函数y=log2(x2-2x-3)的单调增区间为(1,+∞);
②若扇形的周长是6cm,面积是2cm2,则扇形的中心角的弧度数是1或4;
③函数y=lg(x+1)+lg(x-1)为偶函数;
④若x+$\frac{1}{x}$=2$\sqrt{2}$,则$\frac{1+{x}^{4}}{{x}^{2}}$的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.将一个气球的体积变以原来的2倍,它的表面积变为原来的$\root{3}{4}$倍.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{log2an}为等差数列,且a1=$\frac{1}{4}$,a5=64,求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案