精英家教网 > 高中数学 > 题目详情
6.根据定积分的几何含义,$\int_0^2{\sqrt{4-{x^2}}}dx$(  )$\int_0^22dx$.
A.B.C.D.=

分析 由定积分的几何意义画出图形,数形结合得答案.

解答 解:$\int_0^2{\sqrt{4-{x^2}}}dx$的几何意义为以原点为圆心,以2为半径的圆与两坐标轴的正半轴围成的封闭区域的面积;
$\int_0^22dx$的几何意义为直线y=2、x轴、y轴及x=2围成的封闭区域的面积.
如图,

由图可知,$\int_0^2{\sqrt{4-{x^2}}}dx$<$\int_0^22dx$.
故选:B.

点评 本题考查定积分的几何意义,考查了数形结合的解题思想方法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知$\underset{lim}{n→∞}$$\frac{a{n}^{2}+bn-100}{3n-1}$=2,则a、b的值分别为0、6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2+x-lnx.
(1)求曲线y=f(x)在点(1,f(1))处切线方程;  
(2)求函数f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知四棱锥P-ABCD的底面ABCD为菱形,且∠ABC=60°,
AB=PC=2,PA=PB=$\sqrt{2}$.
(Ⅰ)求证:平面PAB⊥平面ABCD;
(Ⅱ)设H是PB上的动点,求CH与平面PAB所成最大角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,a,b,c分别为角A,B,C的对边,若2bcosA=c,则△ABC的形状(  )
A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在如图所示的“茎叶图”表示的数据中,众数和中位数分别是(  )
A.23与26B.26与30C.24与30D.32与26

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知关于x的不等式mx2+2x+6m>0,在下列条件下分别求m的值或取值范围:
(1)不等式的解集为{x|2<x<3};      
(2)不等式的解集为R.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.sinα-sinβ=$\frac{1}{2}$,cosα-cosβ=$\frac{1}{3}$,则cos(α-β)=$\frac{59}{72}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆E的中心在原点,离心率为$\frac{\sqrt{6}}{3}$,右焦点到直线x+y+$\sqrt{2}$=0的距离为2.
(1)求椭圆E的方程;
(2)椭圆下顶点为A,直线y=kx+m(k≠0)与椭圆相交于不同的两点M、N,当|AM|=|AN|时,求m的取值范围.

查看答案和解析>>

同步练习册答案