精英家教网 > 高中数学 > 题目详情
已知数列{an}的首项为2,数列{bn}为等差数列且bn=an+1-an (n∈N*).若b2=-2,b7=8,则a8=
 
考点:等差数列的性质
专题:等差数列与等比数列
分析:由等差数列的性质可得{bn}的通项公式,累加可求a8
解答: 解:设等差数列{bn}的公差为d,
则5d=b7-b2=10,解得d=2,
∴bn=b2+(n-2)d=2n-6,
∴b1=a2-a1=-4,
b2=a3-a2=-2,

b7=a8-a7=8,
以上7式相加可得a8-a1=-4+(-2)+…+8=
7(-4+8)
2
=14,
∴a8=14+a1=14+2=16,
故答案为:16
点评:本题考查等差数列的性质,涉及累加法的应用,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin
x
2
cos
x
2
+cos2
x
2
+m的图象过点(
6
,0).
(Ⅰ)求实数m值以及函数f(x)的单调递增区间;
(Ⅱ)设y=f(x)的图象与x轴、y轴及直线x=t(0<t<
3
)所围成的曲边四边形面积为S,求S关于t的函数S(t)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-1|.
(Ⅰ)解不等式f(x-1)+f(x+3)≥6;
(Ⅱ)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f(
b
a
).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,若m+2n+p=s+2t+r,m,n,p,s,t,r∈N*,则am+2an+ap=as+2at+ar,仿此类比,可得到等比数列{bn}中的一个正确命题:若m+2n+p=s+2t+r,m,n,p,s,t,r∈N*,则
 

查看答案和解析>>

科目:高中数学 来源: 题型:

“横看成岭侧成峰,远近高低各不同.”同一事物从不同角度看,我们会有不同的认识.在数学的解题中,倘若能恰当地改变分析问题的角度,往往会有“山穷水尽疑无路,柳暗花明又一村”的豁然开朗之感.阅读以下问题及其解答:
问题:对任意a∈[-1,1],不等式x2+ax-2≤0恒成立,求实数x的取值范围.
解:令f(a)=xa+(x2-2),则对任意a∈[-1,1],不等式x2+ax-2≤0恒成立只需满足
x2-x-2≤0
x2+x-2≤0
,所以-1≤x≤1.
类比其中所用的方法,可解得关于x的方程x3-ax2-x-(a2+a)=0(a<0)的根为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆心为(0,1)的圆C与直线4x-3y-2=0相交于A,B两点,且|AB|=6,则圆C的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图的程序图中,输出结果是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z=1+
1
i
的模为(  )
A、1
B、
2
C、2
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2为椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)与双曲线C2的公共点左右焦点,它们在第一象限内交于点M,△MF1F2是以线段MF1为底边的等腰三角形,且|MF1|=2.若椭圆C1的离心率e=
3
8
,则双曲线C2的离心率是(  )
A、
5
4
B、
3
2
C、
5
3
D、4

查看答案和解析>>

同步练习册答案