精英家教网 > 高中数学 > 题目详情
12.在△ABC中,a=2,b=3,$sinA=\frac{{\sqrt{3}}}{3}$,则△ABC的面积是$\frac{3\sqrt{2}±\sqrt{3}}{2}$.

分析 由已知利用同角三角函数基本关系式可求cosA的值,利用余弦定理可得:c2-2$\sqrt{6}$c+5=0,解得c的值,进而利用三角形面积公式即可计算得解.

解答 解:∵a=2<b=3,$sinA=\frac{{\sqrt{3}}}{3}$,
∴A为锐角,cosA=$\sqrt{1-si{n}^{2}A}$=$\frac{\sqrt{6}}{3}$,
∴由余弦定理可得:22=32+c2-2×3×c×$\frac{\sqrt{6}}{3}$,整理可得:c2-2$\sqrt{6}$c+5=0,
∴解得:c=$\sqrt{6}$±1,
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{3\sqrt{2}±\sqrt{3}}{2}$.
故答案为:$\frac{3\sqrt{2}±\sqrt{3}}{2}$.

点评 本题主要考查了同角三角函数基本关系式,余弦定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=-x3+x2+b,g(x)=alnx.
(1)若f(x)在(1,b)处的切线过点(2,1),求实数b的值;
(2)若对任意x∈[1,e],都有g(x)≥-2x2+(a+4)x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若把函数$y=\sqrt{3}cos2x-sin2x$的图象向右平移m个单位,所得的图象关于原点成中心对称,则正实数m的最小值是$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.k∈Z,下列各组角的表示中,终边相同的角是(  )
A.$\frac{kπ}{2}$与$kπ±\frac{π}{2}$B.2kπ+π与4kπ±πC.$kπ+\frac{π}{6}$与$2kπ±\frac{π}{6}$D.$\frac{kπ}{3}$与$kπ+\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)证明三倍角的余弦分式:cos3θ=4cos2θ-3cosθ;
(2)利用等式sin36°=cos54°,求sin18°的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$cos({arcsina})=\frac{{\sqrt{3}}}{2}$,$tan({arccosb})=-\sqrt{3}$,且$\frac{sinx}{1-cosx}=a+b$,则角x=(  )
A.$x=2kπ-\frac{π}{2}$,k∈ZB.$x=2kπ+\frac{π}{2}$,k∈ZC.x=2kπ,k∈ZD.x=2kπ+π,k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在用二次法求方程3x+3x-8=0在(1,2)内近似根的过程中,已经得到f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间(  )
A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数$y={({\frac{1}{2}})^{|x|}}-1$与直线y=m有两个交点,则m的取值范围是(  )
A.(-∞,0)B.[-1,0]C.(-1,0)D.[-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=a+\frac{1}{{{4^x}+1}}$是奇函数.
(1)求a值;
(2)判断f(x)的单调性,并利用定义证明.

查看答案和解析>>

同步练习册答案