精英家教网 > 高中数学 > 题目详情
4.在用二次法求方程3x+3x-8=0在(1,2)内近似根的过程中,已经得到f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间(  )
A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能确定

分析 根据函数的零点存在性定理,由f(1)与f(1.5)的值异号得到函数f(x)在区间(1,1.5)内有零点,同理可得函数在区间(1.25,1.5)内有零点,从而得到方程3x+3x-8=0的根所在的区间.

解答 解:∵f(1)<0,f(1.5)>0,
∴在区间(1,1.5)内函数f(x)=3x+3x-8存在一个零点
又∵f(1.5)>0,f(1.25)<0,
∴在区间(1.25,1.5)内函数f(x)=3x+3x-8存在一个零点,
由此可得方程3x+3x-8=0的根落在区间(1.25,1.5)内,
故选:B.

点评 本题给出函数的一些函数值的符号,求相应方程的根所在的区间.着重考查了零点存在定理和方程根的分布的知识,考查了学生分析解决问题的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图所示,四边形ABCD为空间四边形.
(1)已知点E,F分别为边AC,BC的中点,求证:EF∥平面ABD.
(2)已知平行四边形EFGH为空间四边形ABCD的一个截面.
求证:AB∥平面EFGH.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数$y=2cos({2x-\frac{π}{4}})({x∈[{-\frac{π}{2}\;,\;\;\frac{π}{2}}]})$的单调递增区间是[-$\frac{3π}{8}$,$\frac{π}{8}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,a=2,b=3,$sinA=\frac{{\sqrt{3}}}{3}$,则△ABC的面积是$\frac{3\sqrt{2}±\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=a(|sinx|+|cosx|)+4sin2x+9,若$f({\frac{9π}{4}})=13-9\sqrt{2}$.
(1)求a的值;
(2)求f(x)的最小正周期(不需证明最小性);
(3)是否存在正整数n,使得f(x)=0在区间$[{0\;,\;\;\frac{nπ}{2}})$内恰有2015个根.若存在,求出n的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数$f(x)=lg({\sqrt{1+4{x^2}}-2x})+1$,则$f({lg2})+f({lg\frac{1}{2}})$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆C过原点,圆心在直线y=2x上,直线x+y-3=0与圆C交于A,B两点,且$\overrightarrow{OA}•\overrightarrow{OB}=0$,
(1)求圆C的方程;
(2)若M(0,5),P为圆上的动点,求直线MP的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数$f(x)={2^x}+\frac{m}{2^x}$为偶函数,则实数m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知sin($\frac{π}{3}$+a)=$\frac{5}{13}$,且a∈($\frac{π}{6}$,$\frac{2π}{3}$),则sin($\frac{π}{12}$+a)的值是(  )
A.$\frac{17\sqrt{2}}{26}$B.$\frac{-7\sqrt{2}}{26}$C.-$\frac{17\sqrt{2}}{26}$D.$\frac{7\sqrt{2}}{26}$

查看答案和解析>>

同步练习册答案