| A. | (1,2) | B. | (1,$\sqrt{3}$) | C. | ($\sqrt{2}$,2$\sqrt{2}$) | D. | (2,2$\sqrt{2}$) |
分析 acosC=csinA,由正弦定理可得:sinAcosC=sinCsinA,可得tanC=1,解得C=$\frac{π}{4}$.当a=x0时的△ABC有两解,可得${x}_{0}sin\frac{π}{4}$<2<x0,解出即可得出.
解答
解:∵acosC=csinA,由正弦定理可得:sinAcosC=sinCsinA
∵A∈(0,π),∴sinA≠0,∴cosC=sinC,
又C∈(0,π),∴tanC=1,解得C=$\frac{π}{4}$.
∵当a=x0时的△ABC有两解,
∴${x}_{0}sin\frac{π}{4}$<2<x0,
解得2<x0<2$\sqrt{2}$,
则x0的取值范围是(2,2$\sqrt{2}$),
故选:D.
点评 本题考查了正弦定理的应用、解三角形,考查了分类讨论方法、数形结合方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 关于直线x=$\frac{π}{12}$对称 | B. | 关于直线x=$\frac{5π}{12}$对称 | ||
| C. | 关于点($\frac{π}{12}$,0)对称 | D. | 关于点($\frac{5π}{12}$,0)对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | b<a<c | B. | c<a<b | C. | a<b<c | D. | c<b<a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)的最小正周期为π | |
| B. | f(x)的图象关于直线x=$\frac{π}{3}$对称 | |
| C. | f(x)在区间[0,$\frac{π}{4}$]上是增函数 | |
| D. | 函数f(x)的图象可由g(x)=2sin2x-1的图象向右平移$\frac{π}{6}$个单位得到 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-1,0} | B. | {0,1} | C. | {-1,0,1} | D. | {0,1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com