分析 表示出f(x)的对称轴,得到-5<b<-1,同时c<b2,求出f(1)•f(5)=[(b+1)(b+5)]2,由-5<b<-1,得:-4<b+1<0,0<b+5<4,从而求出f(1)•f(5)的值即可.
解答 解:f(x)=x2+2bx+c的对称轴是x=-b,
∴1<-b<5,即-5<b<-1,
而f(x)的最小值是c-b2,
由题意得:c<b2,
故f(1)•f(5)=(2b+c+1)(10b+c+25)>0,
f(1)•f(5)=(2b+c+1)(10b+c+25)<(2b+b2+1)(10b+b2+25)=[(b+1)(b+5)]2,
由-5<b<-1,得:-4<b+1<0,0<b+5<4,
∴-16<(b+1)(b+5)<0,
∴f(1)•f(5)<(-16)2=256,
故答案为:(0,256).
点评 本题考查了二次函数的性质,考查不等式问题,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | (1,$\sqrt{3}$) | C. | ($\sqrt{2}$,2$\sqrt{2}$) | D. | (2,2$\sqrt{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{2}$,+∞) | B. | (-∞,$\frac{1}{2}$) | C. | (-∞,-$\frac{1}{2}$) | D. | (-∞,-$\frac{1}{2}$)∪($\frac{1}{2}$,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com