精英家教网 > 高中数学 > 题目详情
9.如图所示,在侧棱垂直于底面的四棱柱ABCD-A1B1C1D1中,AD∥BC,AD⊥AB,AB═$\sqrt{2}$,AD=2,BC=4,AA1=2,E,F分别是DD1,AA1的中点.
(I)证明:EF∥平面B1C1CB;
(11)求多面体A1B1F-D1C1E的体积.

分析 (Ⅰ)由已知结合三角形的中位线定理可得AD∥BC,再由线面平行的判定得答案;
(Ⅱ)由多面体A1B1F-D1C1E的体积等于三棱柱A1B1F-D1ME的体积与三棱锥C1-D1ME的体积之和,然后结合已知分别求解得答案.

解答 证明:(Ⅰ)∵E、F分别是DD1、AA1的中点,
∴EF∥AD,
又∵AD∥BC,
∴EF∥BC,而EF?平面B1C1CB,且BC?平面B1C1CB,
∴EF∥平面B1C1CB;
解:(Ⅱ)设B1C1中点为M,连接EM、D1M,
由已知得:B1C1⊥平面EMD1,且平面EMD1∥平面FB1A1
∴多面体A1B1F-D1C1E的体积等于三棱柱A1B1F-D1ME的体积与三棱锥C1-D1ME的体积之和,
∵AD⊥AB,AB=$\sqrt{2}$,AD=2,BC=4,AA1=2,
即,$V=\frac{1}{2}×1×\sqrt{2}×2+\frac{1}{3}×\frac{1}{2}×1×\sqrt{2}×2$=$\frac{4\sqrt{2}}{3}$,
∴多面体的体积A1B1F-D1C1E为$\frac{4\sqrt{2}}{3}$.

点评 本题考查直线与平面平行的判定,考查了棱柱、棱锥、棱台体积公式的求法,训练了利用等积法求多面体的体积,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知O是△ABC内一点,$\overrightarrow{OA}$+$\overrightarrow{OB}$+2$\overrightarrow{OC}$=$\overrightarrow 0$,则△AOB的面积与△ABC的面积之比为(  )
A.1:4B.2:3C.1:3D.1:2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,c=2,acosC=csinA,若当a=x0时的△ABC有两解,则x0的取值范围是(  )
A.(1,2)B.(1,$\sqrt{3}$)C.($\sqrt{2}$,2$\sqrt{2}$)D.(2,2$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,右准线l与两条渐近线交于P、Q两点,如果△PQF是等边三角形,则双曲线的离心率是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个空间几何体的三视图如图所示,那么这个空间几何体是(  )
A.B.圆锥C.正方体D.圆柱

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求三棱锥A-BCP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图所示,正方体ABCD-A1B1C1D1的棱长为4,P为BC的中点,Q为线段CC1上的动点,过点A、P、Q的平面截正方体所得的截面即为S.
①当CQ=2时,被S截得的较小几何体为棱台;
②当3<CQ<4时,S为五边形;
③当CQ=3时,S与C1D1的交点R满足D1R=1;
④当CQ=4时,S截正方体两部分的体积之比为1:1.
则以上命题正确的是①②④  (写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|x|,g(x)=-|x-4|+m.
(1)解关于x的不等式g[f(x)]+3-m>0;
(2)若函数f(x)的图象恒在函数g(2x)图象的上方,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),过点Q($\sqrt{2}$,1),右焦点F($\sqrt{2}$,0),
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=k(x-1)分别交x轴,y轴于C,D两点,且与椭圆C交于M,N两点,若$\overrightarrow{CN}=\overrightarrow{MD}$,求k值;
(Ⅲ)自椭圆C上异于其顶点的任意一点P,作圆O:x2+y2=2的两条切线切点分别为P1,P2,若直线P1P2在x轴,y轴上的截距分别为m,n,证明:$\frac{1}{m^2}+\frac{2}{n^2}$=1.

查看答案和解析>>

同步练习册答案