精英家教网 > 高中数学 > 题目详情
14.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求三棱锥A-BCP的体积.

分析 (1)由PD⊥平面ABCD可得PD⊥BC,又BC⊥CD,故BC⊥平面PCD,从而得出BC⊥PC;
(2)以△ABC为底面,则棱锥的高为PD,代入棱锥的体积公式计算即可.

解答 证明:(1)∵PD⊥平面ABCD,BC?平面ABCD
∴PD⊥BC,
∵∠BCD=90°,
∴BC⊥DC,
又PD∩DC=D,PD?平面PCD,DC?平面PCD,
∴BC⊥平面PCD,
∵PC?平面PCD,
∴PC⊥BC.
解:(2)连结AC,
∵AB∥DC,∠BCD=90°,
∴∠ABC=90°.
∴S△ABC=$\frac{1}{2}AB•BC$=$\frac{1}{2}×2×1$=1.
∵PD⊥平面ABCD,
∴VA-BCP=VP-ABC=$\frac{1}{3}{S}_{△ABC}•PD$=$\frac{1}{3}×1×1=\frac{1}{3}$.

点评 本题考查了线面垂直的判定与性质,棱锥的体积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知f(x)=$\left\{\begin{array}{l}{log}_{2}(1-x)(x≤0)\\ f(x-1)-f(x-2)(x>0)\end{array}$,则f(3)+f(-1)=(  )
A.-3B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合M={-2,-1,0,1,2},N={x|$\frac{x-2}{x+1}$≤0},则M∩N=(  )
A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=$\sqrt{3}$,点F是PD中点,$\overrightarrow{CE}$=λ$\overrightarrow{CD}$(0<λ<1).
(Ⅰ)当λ=$\frac{1}{2}$时,判断EF与平面PAC的位置关系,并加以证明;
(Ⅱ)证明:无论λ取何值,都有AF⊥FE;
(Ⅲ)试探究三棱锥B-AFE的体积是否为定值,若是求出该定值,若不是说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,在侧棱垂直于底面的四棱柱ABCD-A1B1C1D1中,AD∥BC,AD⊥AB,AB═$\sqrt{2}$,AD=2,BC=4,AA1=2,E,F分别是DD1,AA1的中点.
(I)证明:EF∥平面B1C1CB;
(11)求多面体A1B1F-D1C1E的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线的一个焦点与抛物线y2=20x的焦点重合,其一条渐近线的斜率等于$\frac{3}{4}$,则该双曲线的标准方程为(  )
A.$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{4}$=1B.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1C.$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1D.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若直线l交抛物线C:y2=2px(p>0)于两不同点A,B,且|AB|=3p,则线段AB中点M到y轴距离的最小值为(  )
A.$\frac{p}{2}$B.pC.$\frac{3p}{2}$D.2p

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率是$\frac{{\sqrt{3}}}{2}$,且椭圆C上任意一点到两个焦点的距离之和是4.直线l:y=kx+m与椭圆C相切于点P,且点P在第二象限.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)求点P的坐标(用k表示);
(Ⅲ)若过坐标原点O的直线l1与l垂直于点Q,求|PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a、b、c分别为△ABC的三个内角A、B、C的对边,若a=$\sqrt{6}$,b=2,B=45°,则角A等于(  )
A.60°B.120°C.60°或120°D.30°

查看答案和解析>>

同步练习册答案