精英家教网 > 高中数学 > 题目详情
2.如图在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=$\sqrt{3}$,点F是PD中点,$\overrightarrow{CE}$=λ$\overrightarrow{CD}$(0<λ<1).
(Ⅰ)当λ=$\frac{1}{2}$时,判断EF与平面PAC的位置关系,并加以证明;
(Ⅱ)证明:无论λ取何值,都有AF⊥FE;
(Ⅲ)试探究三棱锥B-AFE的体积是否为定值,若是求出该定值,若不是说明理由.

分析 (I)当$λ=\frac{1}{2}$时,E为CD的中点,利用中位线定理得出EF∥PC,故EF∥平面PAC;
(II)由PA⊥平面ABCD得CD⊥PA,由CD⊥AD得出CD⊥平面PAD,于是CD⊥AF,由等腰三角形得AF⊥PD,于是AF⊥平面PCD,从而AF⊥EF;
(III)过F作底面ABCD的高线PG,则PG=$\frac{1}{2}AD$为定值,而△ABE的面积也是定值,故而棱锥F-ABE的体积为定值,即棱锥B-AFE的体积是定值.

解答 解:(I)当$λ=\frac{1}{2}$时,EF∥平面PAC.
∵$\overrightarrow{CE}=\frac{1}{2}\overrightarrow{CD}$,∴E是CD的中点,又F是PD的中点,
∴EF∥PC,
又PC?平面PAC,EF?平面PAC,
∴EF∥平面PAC.
(II)∵PA⊥底面ABCD,CD?平面ABCD,
∴PA⊥CD,
又CD⊥AD,AD?平面PAD,PA?平面PAD,AD∩PA=A,
∴CD⊥平面PAD,∵AF?平面PAD,
∴CD⊥AF,
∵PA=AD,点F是PD中点,
∴AF⊥PD,
又CD?平面PCD,PD?平面PCD,PD∩CD=D,
∴AF⊥平面PCD.∵EF?平面PCD,
∴无论λ取何值,都有AF⊥EF.
(III)作FG∥PA交AD于G,则FG⊥平面ABCD,且FG=$\frac{1}{2}$PA=$\frac{1}{2}$.
∴VB-AFE=VF-ABE=$\frac{1}{3}{S}_{△ABE}•FG$=$\frac{1}{3}×\frac{1}{2}×\sqrt{3}×1×\frac{1}{2}$=$\frac{\sqrt{3}}{12}$.
∴三棱锥B-AFE的体积为定值,定值为$\frac{\sqrt{3}}{12}$.

点评 本题考查了线面平行,线面垂直的判定,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.命题“存在x0∈R,2x0≤0”的否定是(  )
A.不存在x0∈R,2x0>0B.存在x0∈R,2x0≥0
C.对任意的x∈R,2x≤0D.对任意的x∈R,2x>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AB=4,EC∥FD,FD⊥底面ABCD,M是AB的中点.
(1)求证:平面CFM⊥平面BDF;
(2)若点N为线段CE的中点,EC=2,FD=3,求证:MN∥平面BEF.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.8个相同的球放入标号为1,2,3的三个盒子中,每个盒子中至少有一个,共有21种不同的放法.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,右准线l与两条渐近线交于P、Q两点,如果△PQF是等边三角形,则双曲线的离心率是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四边形ABCD是直角梯形,AB∥CD,AB=$\frac{1}{2}$CD,AH⊥AD,平面ABCD⊥平面PAD,且△PAD为等边三角形,E是PA的中点,CF=$\frac{1}{4}$CD.
(I)证明:EF∥平面PBC;
(Ⅱ)若AB=$\frac{1}{2}$,AD=1,求几何体PABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求三棱锥A-BCP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.抛物线y2=2px(p>o)的准线被圆x2+y2+2x-3=0所截得的线段长为4,则p=(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线G:$\frac{x^2}{a^2}-{y^2}$=1(a>0)的左顶点为A,若双曲线G的一条渐近线与直线AM平行,则实数a的值为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

同步练习册答案