精英家教网 > 高中数学 > 题目详情
12.8个相同的球放入标号为1,2,3的三个盒子中,每个盒子中至少有一个,共有21种不同的放法.

分析 根据题意,用隔板法分析,先将8个球排成一排,可以形成7个空位,进而在在7个空位中插入2个隔板,由组合数公式计算可得插空的方法数目,即满足题意的放法数目,即可得答案.

解答 解:根据题意,先将8个球排成一排,可以形成7个空位,
在7个空位中插入2个隔板,可以将8个小球分成3组,分别对应标号为1,2,3的三个盒子,
则有C72=$\frac{7×6}{2}$=21种放法,
故答案为:21.

点评 本题考查排列、组合的应用,解题时注意小球是完全相同的,将其排列,只有一种情况.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=x-2,g(x)=x3-tanx,则下列说法正确的是(  )
A.f(x)•g(x)是奇函数B.f(x)•g(x)是偶函数C.f(x)+g(x)是奇函数D.f(x)+g(x)是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知x,y满足不等式组$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,则函数z=2x+y的最小值是(  )
A.3B.$\frac{13}{2}$C.12D.23

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在直角坐标平面内,点A,B的坐标分别为(2,-2),(2,2),不等式|x|+|y|≤2表示的平面区域记为M,设点P是线段AB上的动点,点Q是区域M上的动点,则线段PQ的中点的运动区域的面积是6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合M={-2,-1,0,1,2},N={x|$\frac{x-2}{x+1}$≤0},则M∩N=(  )
A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知集合A={x|-1<x<2},Z是整数集,则A∩Z={0,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=$\sqrt{3}$,点F是PD中点,$\overrightarrow{CE}$=λ$\overrightarrow{CD}$(0<λ<1).
(Ⅰ)当λ=$\frac{1}{2}$时,判断EF与平面PAC的位置关系,并加以证明;
(Ⅱ)证明:无论λ取何值,都有AF⊥FE;
(Ⅲ)试探究三棱锥B-AFE的体积是否为定值,若是求出该定值,若不是说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线的一个焦点与抛物线y2=20x的焦点重合,其一条渐近线的斜率等于$\frac{3}{4}$,则该双曲线的标准方程为(  )
A.$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{4}$=1B.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1C.$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1D.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点到直线x-y+2$\sqrt{2}$=0的距离为3,且过点(-1,-$\frac{\sqrt{6}}{2}$).
(1)求E的方程;
(2)设椭圆E的左顶点是A,直线l:x-my-t=0与椭圆E相交于不同的两点M,N(M,N均与A不重合),且以MN为直径的圆过点A,试判断直线l是否过定点,若过定点,求出该定点的坐标.

查看答案和解析>>

同步练习册答案