精英家教网 > 高中数学 > 题目详情
如图,直角梯形中,,过,垂足为.分别是的中点.现将沿折起,使二面角的平面角为.

(1)求证:平面平面
(2)求直线与面所成角的正弦值.
(1)详见解析;(2)求直线与面所成角的正弦值为.

试题分析:(1)利用折叠前以及在同一平面内,得到在折叠后,由已知条件,结合直线与平面垂直的判定定理可以证明平面,最终利用平面与平面垂直的判定定理即可证明平面平面;(2)解法一是利用空间向量法,即以点为坐标原点,分别为轴、轴建立空间坐标系,将二面角进行适当转化,再利用空间向量法求出直线与面所成角的正弦值;解法二是利用到(1)中的结论平面,只需作于点,于是确定直线与面所成角为,借助点的中点从而得到为中位线,于是确定点的中点,连接,在直角三角形中计算出.
试题解析:(1)证明:DEAE,CEAE,
 AE平面,   3分
 AE平面平面平面.  5分
(2)(方法一)以E为原点,EA、EC分别为轴,建立空间直角坐标系  6分
DEAE,CEAE,是二面角的平面角,即=,  7分

A(2,0,0),B(2,1,0),C(0,1,0),E(0,0,0),D(0,,1).  9分
分别是的中点,F,G   10分
==,  11分
由(1)知是平面的法向量,    12分
设直线与面所成角,则
故求直线与面所成角的正弦值为.   14分(列式1分,计算1分)
(方法二)作,与相交于,连接  6分
由(1)知AE平面,所以平面是直线与平面所成角  7分
的中点,的中位线,  8分
因为DEAE,CEAE,所以是二面角的平面角,即= 9分
中,由余弦定理得,
(或)  11分(列式1分,计算1分)
平面,所以,在中,   13分
所以直线与面所成角的正弦值为  14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

平行四边形中,,且,以BD为折线,把△ABD折起,,连接AC.

(1)求证:;
(2)求二面角B-AC-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直角梯形ABCD中,AD//BC,∠ADC=90º,AE⊥平面ABCD,EF//CD,BC=CD=AE=EF==1.

(Ⅰ)求证:CE//平面ABF;
(Ⅱ)求证:BE⊥AF;
(Ⅲ)在直线BC上是否存在点M,使二面角E-MD-A的大小为?若存在,求出CM的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体中,的中点,则异面直线所成的角的余弦值是(       )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体中,直线和平面所成角的余弦值大小为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在三棱锥中,,底面是正三角形,分别是侧棱的中点. 若平面平面,则侧棱与平面所成角的正切值是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在圆锥中,已知,⊙O的直径的中点,的中点.

(1)证明:平面平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,△ABC中,∠ACB=90°,直线l过点A且垂直于平面ABC,动点P∈l,当点P逐渐远离点A时,∠PCB的大小(  ).
A.变大 B.变小C.不变D.有时变大有时变小

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知棱长为a的正方体ABCD—A1B1C1D1,E为BC中点.
(1)求B到平面B1ED距离
(2)求直线DC和平面B1ED所成角的正弦值. (12分)

查看答案和解析>>

同步练习册答案