精英家教网 > 高中数学 > 题目详情

如图,边长为4的正方形与正三角形所在的平面相互垂直,且
分别为中点.

(1)求证:
(2)求直线与平面所成角的正弦值.

(1)证即得证. (2)

解析试题分析:(1)取,在中,

、G分别为的中点,                                        
,又
,故四边形为平行四边形,
,又
     
(2) 连接 ,因为面,且,所以
,又,所以面
过点垂足为,连,
所成的角   
在正方形ABCD中,易知
    

中,
考点:与二面角有关的立体几何综合题;空间中直线与直线间的位置关系;直线与平面所成的角.
点评:本题考查异面直线垂直的证明,求二面角的大小,求直线与平面所成角的正弦值.考查运
算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综
合性强,难度大,易出错.是高考的重点.解题时要认真审题,仔细解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.

(1)求证:DC平面ABC;
(2)求BF与平面ABC所成角的正弦值;
(3)求二面角B-EF-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.

(Ⅰ)求证AM//平面BDE;
(Ⅱ)求二面角A-DF-B的大小;
(Ⅲ)试在线段AC上确定一点P,使得PF与BC所成的角是60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在△中,,点上,.沿将△翻折成△,使平面平面;沿将△翻折成△,使平面平面

(Ⅰ)求证:平面
(Ⅱ)设,当为何值时,二面角的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为直角梯形,且,侧面底面. 若.

(Ⅰ)求证:平面
(Ⅱ)侧棱上是否存在点,使得平面?若存在,指出点 的位置并证明,若不存在,请说明理由;
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面AEB,,,G是BC的中点.

(Ⅰ)求证:
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知两个正方形ABCD 和DCEF不在同一平面内,且平面ABCD ⊥平面DCEF,M,N分别为AB,DF的中点。

(1)求直线MN与平面ABCD所成角的正弦值;
(2)求异面直线ME与BN所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,四棱锥P-ABCD的底面ABCD是直角梯形,∠DAB=∠ABC=90o,PA⊥底面ABCD,PA=AB=AD=2,BC=1,E为PD的中点.

(1) 求证:CE∥平面PAB;
(2) 求PA与平面ACE所成角的大小;
(3) 求二面角E-AC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)如图,在多面体ABCDE中,,,是边长为2的等边三角形,CD与平面ABDE所成角的正弦值为.

(1)在线段DC上是否存在一点F,使得,若存在,求线段DF的长度,若不存在,说明理由;
(2)求二面角的平面角的余弦值.

查看答案和解析>>

同步练习册答案