精英家教网 > 高中数学 > 题目详情

(本小题满分12分)如图,四棱锥P-ABCD的底面ABCD是直角梯形,∠DAB=∠ABC=90o,PA⊥底面ABCD,PA=AB=AD=2,BC=1,E为PD的中点.

(1) 求证:CE∥平面PAB;
(2) 求PA与平面ACE所成角的大小;
(3) 求二面角E-AC-D的大小.

(1) 取PA的中点F,连结FE、FB,则FE∥BC,且FE=AD=BC,∴BCEF是平行四边形,∴CE∥BF,而BFÌ平面PAB,∴CE∥平面PAB.(2) arcsin(3) arccos

解析试题分析:(1)证明:取PA的中点F,连结FE、FB,则
FE∥BC,且FE=AD=BC,∴BCEF是平行四边形,
∴CE∥BF,而BFÌ平面PAB,∴CE∥平面PAB.
(2) 解:取 AD的中点G,连结EG,则EG∥AP,问题转为求EG与平面ACE所成角的大小.又设点G到平面ACE的距离为GH,H为垂足,连结EH,则∠GEH为直线EG与平面ACE所成的角.现用等体积法来求GH.
∵VE-AGCSAGC·EG=
又AE=,AC=CE=,易求得SAEC
∴VG-AEC´´GH=VE-AGC,∴GH=
在Rt△EHG中,sin∠GEH=,即PA与平面ACE所成的角为arcsin
(3) 设二面角E-AC-D的大小为a.
由面积射影定理得cosa=,∴a=arccos,即二面角E-AC-D的大小为arccos
考点:线面平行的判定及线面角二面角的求解
点评:本题还可利用空间向量求解,利用AB,AD,AP两两垂直,以A为原点建立坐标系,根据线段长度写出各点坐标,带入相应的公式计算求角

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面为一直角梯形,其中底面的中点.

(Ⅰ)求证://平面
(Ⅱ)若平面,求平面与平面夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,边长为4的正方形与正三角形所在的平面相互垂直,且
分别为中点.

(1)求证:
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知一四棱锥P-ABCD的三视图如下,E是侧棱PC上的动点。

(Ⅰ)求四棱锥P-ABCD的体积;
(Ⅱ)当点E在何位置时,BD⊥AE?证明你的结论;
(Ⅲ)若点E为PC的中点,求二面角D-AE-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2 DE=2,M为AD中点.

(Ⅰ) 证明
(Ⅱ) 若二面角A-BF-D的平面角的余弦值为,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)在如图的多面体中,⊥平面,的中点.

(Ⅰ) 求证:平面
(Ⅱ) 求证:
(Ⅲ) 求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,且OA=2,OB=3,OC=4,E是OC的中点.

(1)求异面直线BE与AC所成角的余弦值;
(2)求二面角A-BE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图:直三棱柱ABC中,,D为AB中点。

(1)求证:
(2)求证:∥平面
(3)求C1到平面A1CD的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,⊙O的直径AB=4,点C、D为⊙O上两点,且∠CA B=45o,∠DAB=60o,F为的中点.沿直径AB折起,使两个半圆所在平面互相垂直(如图).

(1)求证:OF//平面ACD;
(2)求二面角C- AD-B的余弦值;
(3)在上是否存在点G,使得FG∥平面ACD?若存在,试指出点G的位置,并求直线AG与平面ACD所成角的正弦值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案