精英家教网 > 高中数学 > 题目详情

如图,⊙O的直径AB=4,点C、D为⊙O上两点,且∠CA B=45o,∠DAB=60o,F为的中点.沿直径AB折起,使两个半圆所在平面互相垂直(如图).

(1)求证:OF//平面ACD;
(2)求二面角C- AD-B的余弦值;
(3)在上是否存在点G,使得FG∥平面ACD?若存在,试指出点G的位置,并求直线AG与平面ACD所成角的正弦值;若不存在,请说明理由.

(1)只需证;(2);(3)

解析试题分析:(法一):证明:(1)如右图,连接,     


的中点,

平面平面
平面.3分
解:(2)过,连.     
,平面⊥平面.    
⊥平面
平面

平面
则∠是二面角的平面角.       5分

⊥平面平面,得为直角三角形,

==.  8分
(3)设在上存在点,使得//平面
平面平面平面

因此,在上存在点,使得//平面,且点的中点.10分
,设与平面所成角为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,四棱锥P-ABCD的底面ABCD是直角梯形,∠DAB=∠ABC=90o,PA⊥底面ABCD,PA=AB=AD=2,BC=1,E为PD的中点.

(1) 求证:CE∥平面PAB;
(2) 求PA与平面ACE所成角的大小;
(3) 求二面角E-AC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)如图,在多面体ABCDE中,,,是边长为2的等边三角形,CD与平面ABDE所成角的正弦值为.

(1)在线段DC上是否存在一点F,使得,若存在,求线段DF的长度,若不存在,说明理由;
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD为直角梯形,AD∥BC,BAD=90°,PA底面ABCD,且PA=AD=AB=2BC=2,M、N分别为PC、PB的中点.

(Ⅰ)求证:PB平面ADMN;
(Ⅱ)求四棱锥P-ADMN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面为直角梯形ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.(1)求证:PB⊥DM;(2)求CD与平面ADMN所成角的正弦值;(3)在棱PD上是否存在点E,且PE∶ED=λ,使得二面角C-AN-E的平面角为60o.若存在求出λ值,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,

(1)线段的中点为,线段的中点为,求证:
(2)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为△SAB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)如图,平面,点上,,四边形为直角梯形,,

(1)求证:平面
(2)求二面角的余弦值;
(3)直线上是否存在点,使∥平面,若存在,求出点;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图所示,在矩形中,的中点,F为BC的中点,O为AE的中点,以AE为折痕将△ADE向上折起,使D到P点位置,且

(1)求证:
(2)求二面角E-AP-B的余弦值.

查看答案和解析>>

同步练习册答案