如图,⊙O的直径AB=4,点C、D为⊙O上两点,且∠CA B=45o,∠DAB=60o,F为的中点.沿直径AB折起,使两个半圆所在平面互相垂直(如图).
(1)求证:OF//平面ACD;
(2)求二面角C- AD-B的余弦值;
(3)在上是否存在点G,使得FG∥平面ACD?若存在,试指出点G的位置,并求直线AG与平面ACD所成角的正弦值;若不存在,请说明理由.
科目:高中数学 来源: 题型:解答题
(本小题满分12分)如图,四棱锥P-ABCD的底面ABCD是直角梯形,∠DAB=∠ABC=90o,PA⊥底面ABCD,PA=AB=AD=2,BC=1,E为PD的中点.
(1) 求证:CE∥平面PAB;
(2) 求PA与平面ACE所成角的大小;
(3) 求二面角E-AC-D的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)如图,在多面体ABCDE中,,,是边长为2的等边三角形,,CD与平面ABDE所成角的正弦值为.
(1)在线段DC上是否存在一点F,使得,若存在,求线段DF的长度,若不存在,说明理由;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD为直角梯形,AD∥BC,BAD=90°,PA底面ABCD,且PA=AD=AB=2BC=2,M、N分别为PC、PB的中点.
(Ⅰ)求证:PB平面ADMN;
(Ⅱ)求四棱锥P-ADMN的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,底面为直角梯形ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.(1)求证:PB⊥DM;(2)求CD与平面ADMN所成角的正弦值;(3)在棱PD上是否存在点E,且PE∶ED=λ,使得二面角C-AN-E的平面角为60o.若存在求出λ值,若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,
(1)线段的中点为,线段的中点为,求证:;
(2)求直线与平面所成角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为△SAB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题12分)如图,平面,点在上,∥,四边形为直角梯形,,,
(1)求证:平面;
(2)求二面角的余弦值;
(3)直线上是否存在点,使∥平面,若存在,求出点;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
如图所示,在矩形中,的中点,F为BC的中点,O为AE的中点,以AE为折痕将△ADE向上折起,使D到P点位置,且.
(1)求证:
(2)求二面角E-AP-B的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com