(本题满分12分)在如图的多面体中,⊥平面,,,,,,,是的中点.
(Ⅰ) 求证:平面;
(Ⅱ) 求证:;
(Ⅲ) 求二面角的余弦值.
科目:高中数学 来源: 题型:解答题
如图,四棱锥E—ABCD中,ABCD是矩形,平面EAB平面ABCD,AE=EB=BC=2,F为CE上的点,且BF平面AC E.
(1)求证:AEBE;
(2)求三棱锥D—AEC的体积;
(3)求二面角A—CD—E的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)如图,四棱锥P-ABCD的底面ABCD是直角梯形,∠DAB=∠ABC=90o,PA⊥底面ABCD,PA=AB=AD=2,BC=1,E为PD的中点.
(1) 求证:CE∥平面PAB;
(2) 求PA与平面ACE所成角的大小;
(3) 求二面角E-AC-D的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(满分12分)如右图,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中点。
(Ⅰ)求证:B1C//平面A1BD;
(Ⅰ)求二面角A—A1B—D的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图:在三棱锥D-ABC中,已知是正三角形,AB平面BCD,,E为BC的中点,F在棱AC上,且
(1)求三棱锥D-ABC的表面积;
(2)求证AC⊥平面DEF;
(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分) 本题共有2个小题,第1小题满分6分,第2小题满分6分.
如图已知四棱锥的底面是边长为6的正方形,侧棱的长为8,且垂直于底面,点分别是的中点.求
(1)异面直线与所成角的大小(结果用反三角函数值表示);
(2)四棱锥的表面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,
(1)线段的中点为,线段的中点为,求证:;
(2)求直线与平面所成角的正切值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com