精英家教网 > 高中数学 > 题目详情

如图,在四棱锥中,⊥平面的中点, 的中点,底面是菱形,对角线交于点

求证:(1)平面平面
(2)平面⊥平面

(1)先利用线面平行的判定定理证明平面平面,即得证
(2)先利用线面垂直的判定定理证明⊥平面,即得证

解析试题分析:(1)因为的中点,的中点,所以
平面平面,所以平面               ……4分
同理可证,平面,又
所以,平面平面.                                            ……7分
(2)因为⊥平面平面,所以           ……9分
因为底面是菱形,所以,又
所以⊥平面                                                  ……12分
平面,所以平面⊥平面.                       ……14分
考点:本小题主要考查线面平行和线面垂直的判定.
点评:要解决此类问题,要充分发挥空间想象能力,紧扣相应的判定定理和性质定理,定理中要求的条件要一一列举出来,缺一不可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,是均以为斜边的等腰直角三角形,分别为的中点,的中点,且平面.

(1)证明:平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,且AB=AD,BC=DC.

(1)求证:平面EFGH;
(2)求证:四边形EFGH是矩形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四边形中,对角线,的重心,过点的直线分别交,沿折起,沿折起,正好重合于.

(Ⅰ) 求证:平面平面
(Ⅱ)求平面与平面夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知一四棱锥P-ABCD的三视图如下,E是侧棱PC上的动点。

(Ⅰ)求四棱锥P-ABCD的体积;
(Ⅱ)当点E在何位置时,BD⊥AE?证明你的结论;
(Ⅲ)若点E为PC的中点,求二面角D-AE-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图,在四棱锥中,平面平面是等边三角形,已知

(Ⅰ)设上的一点,证明:平面平面
(Ⅱ)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)在如图的多面体中,⊥平面,的中点.

(Ⅰ) 求证:平面
(Ⅱ) 求证:
(Ⅲ) 求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,已知所在的平面,AB是⊙的直径,是⊙上一点,且分别为中点。

(1)求证:平面
(2)求证:
(3)求三棱锥-的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图的直三棱柱中,,点的中点.

(1)求证:∥平面
(2)求异面直线所成的角的余弦值;
(3)求直线与平面所成角的正弦值;

查看答案和解析>>

同步练习册答案