精英家教网 > 高中数学 > 题目详情

如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,且AB=AD,BC=DC.

(1)求证:平面EFGH;
(2)求证:四边形EFGH是矩形.

(1)要证明线面平行,则要根据题意,得到线线平行,即EH∥BD。
(2)证明一个四边形是矩形,首先确定是平行四边形,再证明一个角是直角来得到。

解析试题分析:证明:(1)∵E,H分别为AB, DA的中点.
∴EH∥BD,又平面EFGH,平面EFGH,
平面EFGH;……4分
(2)取BD中点O,连续OA,OC.
∵ AB=AD,BC=DC.∴AO⊥BD,CO⊥BD,
又AO∩CO=0.∴BD⊥平面AOC.
∴BD⊥AC.                   ……7分
∵E,F,G,H为AB,BC,CD,DA的中点.
∴EH∥BD,且EH=BD;FG∥BD,且FG=BD,EF∥AC.
∴EH∥FG,且EH=FG.
∴四边形EFGH是平行四边形.……10分
由(2)可知AC⊥BD,又EF∥AC,EH∥BD.
∴EF⊥EH.
∴四边形EFGH为矩形.   ……12分
考点:线面平行,矩形
点评:主要是考查了空间中线面平行的证明,以及关于平面四边形的形状的确定,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,四边形ABCD是正方形,PD⊥平面ABCDPD=AB=2, E,F,G分别是PC,PD,BC的中点.

(1)求三棱锥E-CGF的体积;
(2)求证:平面PAB//平面EFG

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥E—ABCD中,ABCD是矩形,平面EAB平面ABCD,AE=EB=BC=2,F为CE上的点,且BF平面AC E.

(1)求证:AEBE;
(2)求三棱锥D—AEC的体积;
(3)求二面角A—CD—E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面ABCD⊥平面ABEF,又ABCD是正方形,ABEF是矩形,且GEF的中
点.

(1)求证:平面AGC⊥平面BGC;
(2)求GB与平面AGC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在△中,,点上,.沿将△翻折成△,使平面平面;沿将△翻折成△,使平面平面

(Ⅰ)求证:平面
(Ⅱ)设,当为何值时,二面角的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角梯形PBCD中,,A为PD的中点,如下左图。将沿AB折到的位置,使,点E在SD上,且,如下图。
(1)求证:平面ABCD;
(2)求二面角E—AC—D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面AEB,,,G是BC的中点.

(Ⅰ)求证:
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,⊥平面的中点, 的中点,底面是菱形,对角线交于点

求证:(1)平面平面
(2)平面⊥平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分) 本题共有2个小题,第1小题满分6分,第2小题满分6分.
如图已知四棱锥的底面是边长为6的正方形,侧棱的长为8,且垂直于底面,点分别是的中点.求

(1)异面直线所成角的大小(结果用反三角函数值表示);
(2)四棱锥的表面积.

查看答案和解析>>

同步练习册答案