精英家教网 > 高中数学 > 题目详情

如图,平面AEB,,,G是BC的中点.

(Ⅰ)求证:
(Ⅱ)求二面角的大小.

(Ⅰ)利用向量垂直证明线线垂直;(Ⅱ)利用向量法求解二面角的大小

解析试题分析:(Ⅰ)以为轴建立坐标系如图所示,
,故:


(Ⅱ)设平面GED的一个法向量为,则
,平面FED的一个法向量为
,二面角为锐角,其大小为.         
考点:本题考查了空间中的线面关系及二面角的求法
点评:向量法把空间的线面关系及角的求法转化为了计算问题,是理科学生常用的方法,但是计算量较大,希望学生认真计算

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图, 三棱柱ABC—A1B1C1的侧棱AA1⊥底面ABC, ∠ACB =" 90°," E是棱CC1上动点, F是AB中点, AC =" 1," BC =" 2," AA1 =" 4."

(1) 当E是棱CC1中点时, 求证: CF∥平面AEB1;
(2) 在棱CC1上是否存在点E, 使得二面角A—EB1—B
的余弦值是, 若存在, 求CE的长, 若不存在,
请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四边形ABCD为平行四边形,BC⊥平面ABEAEBEBE = BC = 1,AE = M为线段AB的中点,N为线段DE的中点,P为线段AE的中点。

(1)求证:MNEA
(2)求四棱锥MADNP的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,且AB=AD,BC=DC.

(1)求证:平面EFGH;
(2)求证:四边形EFGH是矩形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,边长为4的正方形与正三角形所在的平面相互垂直,且
分别为中点.

(1)求证:
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四边形中,对角线,的重心,过点的直线分别交,沿折起,沿折起,正好重合于.

(Ⅰ) 求证:平面平面
(Ⅱ)求平面与平面夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知一四棱锥P-ABCD的三视图如下,E是侧棱PC上的动点。

(Ⅰ)求四棱锥P-ABCD的体积;
(Ⅱ)当点E在何位置时,BD⊥AE?证明你的结论;
(Ⅲ)若点E为PC的中点,求二面角D-AE-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)在如图的多面体中,⊥平面,的中点.

(Ⅰ) 求证:平面
(Ⅱ) 求证:
(Ⅲ) 求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是棱长为1的正方体,四棱锥中,平面

(Ⅰ)求证:
(Ⅱ)求直线与平面所成角的正切值。

查看答案和解析>>

同步练习册答案