精英家教网 > 高中数学 > 题目详情

如图, 三棱柱ABC—A1B1C1的侧棱AA1⊥底面ABC, ∠ACB =" 90°," E是棱CC1上动点, F是AB中点, AC =" 1," BC =" 2," AA1 =" 4."

(1) 当E是棱CC1中点时, 求证: CF∥平面AEB1;
(2) 在棱CC1上是否存在点E, 使得二面角A—EB1—B
的余弦值是, 若存在, 求CE的长, 若不存在,
请说明理由.

(1)取AB1的中点G, 联结EG, FG,F、G分别是棱AB、AB1中点, 
FG∥EC, ,  FG=EC 四边形FGEC是平行四边形, 平面AEB.
(2)在棱CC1上存在点E, 符合题意, 此时

解析试题分析:(1)证明:取AB1的中点G, 联结EG, FG
F、G分别是棱AB、AB1中点, 
FG∥EC, ,  FG=EC 四边形FGEC是平行四边形,
                   4分
CF平面AEB1, 平面AEB1  平面AEB.        6分
(2)解:以C为坐标原点, 射线CA, CB, CC1轴正半轴,
建立如图所示的空间直角坐标系

则C(0, 0, 0), A(1, 0, 0), B1(0, 2, 4)
, 平面AEB1的法向量.
,
,
     8分  
平面
是平面EBB1的法向量,则平面EBB1的法向量         10分
二面角A—EB1—B的平面角余弦值为,
解得
在棱CC1上存在点E, 符合题意, 此时              12分
考点:线面平行的判定与二面角的求解
点评:线面平行的判定常借助于面内一直线与面外直线平行来证明,第二问求二面角主要借助了空间直角坐标系将二面角的问题转化为两个半平面的法向量所成角问题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四边形ABCD中,AC平分∠DAB,∠ABC=60°,AC=6,AD=5,S△ADC,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,是正三角形,都垂直于平面,且的中点.

求证:(1)平面
(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,四边形ABCD是正方形,PD⊥平面ABCDPD=AB=2, E,F,G分别是PC,PD,BC的中点.

(1)求三棱锥E-CGF的体积;
(2)求证:平面PAB//平面EFG

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.

(1)求证:DC平面ABC;
(2)求BF与平面ABC所成角的正弦值;
(3)求二面角B-EF-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正方体中,是棱的中点.

(Ⅰ)证明:平面
(Ⅱ)证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

 是双曲线 上一点,分别是双曲线的左、右顶点,直线的斜率之积为.

(1)求双曲线的离心率;
(2)过双曲线的右焦点且斜率为1的直线交双曲线于两点,为坐标原点,为双曲线上一点,满足,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥E—ABCD中,ABCD是矩形,平面EAB平面ABCD,AE=EB=BC=2,F为CE上的点,且BF平面AC E.

(1)求证:AEBE;
(2)求三棱锥D—AEC的体积;
(3)求二面角A—CD—E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面AEB,,,G是BC的中点.

(Ⅰ)求证:
(Ⅱ)求二面角的大小.

查看答案和解析>>

同步练习册答案