精英家教网 > 高中数学 > 题目详情

 是双曲线 上一点,分别是双曲线的左、右顶点,直线的斜率之积为.

(1)求双曲线的离心率;
(2)过双曲线的右焦点且斜率为1的直线交双曲线于两点,为坐标原点,为双曲线上一点,满足,求的值.

(1) e=.  (2)λ=0或λ=-4.

解析试题分析:(1)点P(x0,y0)(x0≠±a)在双曲线=1上,有=1,        1分
由题意又有·,                       2分
可得a2=5b2,c2=a2+b2=6b2,则e=.                  4分
(2)联立,得4x2-10cx+35b2=0,设A(x1,y1),B(x2,y2)
①                          6分
,即
又C为双曲线上一点,即-5=5b2,有(λx1+x2)2-5(λy1+y2)2=5b2  。7分
化简得:λ2(-5)+(-5)+2λ(x1x2-5y1y2)=5b2             。9分
又A(x1,y1),B(x2,y2)在双曲线上,所以-5=5b2-5=5b2
由①式又有x1x2-5y1y2=x1x2-5(x1-c)(x2-c)=-4x1x2+5c(x1+x2)-5c2=10b2
得λ2+4λ=0,解出λ=0或λ=-4.                   12分
考点:本题主要考查双曲线标准方程及其几何性质,直线与双曲线的位置关系,平面向量的线性运算。
点评:难题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题利用双曲线的标准方程,确定得到离心率。本题(II)在利用韦达定理的基础上,又利于点在曲线上得到λ的方程,使问题得解。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在三棱柱ABC—中,底面为正三角形,平面ABC,=2AB,N是的中点,M是线段上的动点。

(1)当M在什么位置时,,请给出证明;
(2)若直线MN与平面ABN所成角的大小为,求的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知AD=4, BD=,AB=2CD=8.

(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(2)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图, 三棱柱ABC—A1B1C1的侧棱AA1⊥底面ABC, ∠ACB =" 90°," E是棱CC1上动点, F是AB中点, AC =" 1," BC =" 2," AA1 =" 4."

(1) 当E是棱CC1中点时, 求证: CF∥平面AEB1;
(2) 在棱CC1上是否存在点E, 使得二面角A—EB1—B
的余弦值是, 若存在, 求CE的长, 若不存在,
请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形PCBM是直角梯形,.又,直线AM与直线PC所成的角为

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是均以为斜边的等腰直角三角形,分别为的中点,的中点,且平面.

(1)证明:平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面为一直角梯形,其中底面的中点.

(Ⅰ)求证://平面
(Ⅱ)若平面,求平面与平面夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四边形ABCD为平行四边形,BC⊥平面ABEAEBEBE = BC = 1,AE = M为线段AB的中点,N为线段DE的中点,P为线段AE的中点。

(1)求证:MNEA
(2)求四棱锥MADNP的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知一四棱锥P-ABCD的三视图如下,E是侧棱PC上的动点。

(Ⅰ)求四棱锥P-ABCD的体积;
(Ⅱ)当点E在何位置时,BD⊥AE?证明你的结论;
(Ⅲ)若点E为PC的中点,求二面角D-AE-B的大小.

查看答案和解析>>

同步练习册答案