精英家教网 > 高中数学 > 题目详情

如图,四棱锥的底面为一直角梯形,其中底面的中点.

(Ⅰ)求证://平面
(Ⅱ)若平面,求平面与平面夹角的余弦值.


(1)要证明线面平行,可以建立直角坐标系,然后借助于平面的法向量以直线的方向向量得垂直关系来证明。
(2)

解析试题分析:设,建立空间坐标系,使得
,
.      2分
(Ⅰ)
所以
平面平面.                   5分
(Ⅱ)平面,即
,即.
平面和平面中,
所以平面的一个法向量为;平面的一个法向量为
,所以平面与平面夹角的余弦值为.     12分
考点:线面平行,二面角的平面角
点评:主要是考查了运用空间向量来证明垂直以及二面角的平面角的 求解,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在正四棱锥中,底面是边长为2的正方形,侧棱,的中点,是侧棱上的一动点。

(1)证明:
(2)当直线时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.

(1)求证:DC平面ABC;
(2)求BF与平面ABC所成角的正弦值;
(3)求二面角B-EF-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

 是双曲线 上一点,分别是双曲线的左、右顶点,直线的斜率之积为.

(1)求双曲线的离心率;
(2)过双曲线的右焦点且斜率为1的直线交双曲线于两点,为坐标原点,为双曲线上一点,满足,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知AC ⊥平面CDE, BD ∥AC , 为等边三角形,F为ED边上的中点,且

(Ⅰ)求证:CF∥面ABE;
(Ⅱ)求证:面ABE ⊥平面BDE;
(Ⅲ)求该几何体ABECD的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥E—ABCD中,ABCD是矩形,平面EAB平面ABCD,AE=EB=BC=2,F为CE上的点,且BF平面AC E.

(1)求证:AEBE;
(2)求三棱锥D—AEC的体积;
(3)求二面角A—CD—E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.

(Ⅰ)求证AM//平面BDE;
(Ⅱ)求二面角A-DF-B的大小;
(Ⅲ)试在线段AC上确定一点P,使得PF与BC所成的角是60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在△中,,点上,.沿将△翻折成△,使平面平面;沿将△翻折成△,使平面平面

(Ⅰ)求证:平面
(Ⅱ)设,当为何值时,二面角的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,四棱锥P-ABCD的底面ABCD是直角梯形,∠DAB=∠ABC=90o,PA⊥底面ABCD,PA=AB=AD=2,BC=1,E为PD的中点.

(1) 求证:CE∥平面PAB;
(2) 求PA与平面ACE所成角的大小;
(3) 求二面角E-AC-D的大小.

查看答案和解析>>

同步练习册答案