如图,四棱锥
的底面
为一直角梯形,其中
,
底面
,
是
的中点.![]()
(Ⅰ)求证:
//平面
;
(Ⅱ)若
平面
,求平面
与平面
夹角的余弦值.
科目:高中数学 来源: 题型:解答题
如图甲,在平面四边形ABCD中,已知![]()
,
,现将四边形ABCD沿BD折起,使平面ABD
平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.![]()
![]()
(1)求证:DC
平面ABC;
(2)求BF与平面ABC所成角的正弦值;
(3)求二面角B-EF-A的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
![]()
是双曲线![]()
![]()
上一点,
、
分别是双曲线
的左、右顶点,直线
,
的斜率之积为
.![]()
(1)求双曲线的离心率;
(2)过双曲线
的右焦点且斜率为1的直线交双曲线于
,
两点,
为坐标原点,
为双曲线上一点,满足
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,已知AC ⊥平面CDE, BD ∥AC ,
为等边三角形,F为ED边上的中点,且
,![]()
(Ⅰ)求证:CF∥面ABE;
(Ⅱ)求证:面ABE ⊥平面BDE;
(Ⅲ)求该几何体ABECD的体积。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥E—ABCD中,ABCD是矩形,平面EAB
平面ABCD,AE=EB=BC=2,F为CE上的点,且BF
平面AC E.![]()
(1)求证:AE
BE;
(2)求三棱锥D—AEC的体积;
(3)求二面角A—CD—E的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
,AF=1,M是线段EF的中点.![]()
(Ⅰ)求证AM//平面BDE;
(Ⅱ)求二面角A-DF-B的大小;
(Ⅲ)试在线段AC上确定一点P,使得PF与BC所成的角是60°.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在△
中,
,
,点
在
上,
交
于
,
交
于
.沿
将△
翻折成△
,使平面
平面
;沿
将△
翻折成△
,使平面
平面
.![]()
(Ⅰ)求证:
平面
.
(Ⅱ)设
,当
为何值时,二面角
的大小为
?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)如图,四棱锥P-ABCD的底面ABCD是直角梯形,∠DAB=∠ABC=90o,PA⊥底面ABCD,PA=AB=AD=2,BC=1,E为PD的中点.![]()
(1) 求证:CE∥平面PAB;
(2) 求PA与平面ACE所成角的大小;
(3) 求二面角E-AC-D的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com