如图,在正四棱锥中,底面是边长为2的正方形,侧棱,为的中点,是侧棱上的一动点。
(1)证明:;
(2)当直线时,求三棱锥的体积.
科目:高中数学 来源: 题型:解答题
在正方体ABCD—A1B1C1D1中,E、F分别为棱BB1和DD1的中点.
(1)求证:平面B1FC//平面ADE;
(2)试在棱DC上取一点M,使平面ADE;
(3)设正方体的棱长为1,求四面体A1—FEA的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在斜三棱柱ABC—A1B1C1中,AB⊥侧面BB1C1C,BC=2,BB1=4,AB=,∠BCC1=60°.
(Ⅰ)求证:C1B⊥平面A1B1C1;
(Ⅱ)求A1B与平面ABC所成角的正切值;
(Ⅲ)若E为CC1中点,求二面角A—EB1—A1的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在三棱柱ABC—中,底面为正三角形,平面ABC,=2AB,N是的中点,M是线段上的动点。
(1)当M在什么位置时,,请给出证明;
(2)若直线MN与平面ABN所成角的大小为,求的最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图(1),在等腰梯形CDEF中,CB、DA是梯形的高,,,现将梯形沿CB、DA折起,使EF//AB且,得一简单组合体如图(2)所示,已知分别为的中点.
图(1) 图(2)
(Ⅰ)求证:平面;
(Ⅱ)求证:平面.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在图一所示的平面图形中,是边长为 的等边三角形,是分别以为底的全等的等腰三角形,现将该平面图形分别沿折叠,使所在平面都与平面垂直,连接,得到图二所示的几何体,据此几何体解决下面问题.
(1)求证:;
(2)当时,求三棱锥的体积;
(3)在(2)的前提下,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知AD=4, BD=,AB=2CD=8.
(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(2)求四棱锥P-ABCD的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com