精英家教网 > 高中数学 > 题目详情

如图,是棱长为1的正方体,四棱锥中,平面

(Ⅰ)求证:
(Ⅱ)求直线与平面所成角的正切值。

(Ⅰ) 先证明四边形为平行四边形,∴,再利用线面平行的性质定理证明即可;                 (Ⅱ)

解析试题分析:(Ⅰ)取的中点,连结

,,平面

,                                                         ……1分

∴四边形为平行四边形,
,                                                                     ……3分
平面,平面,∴平面.                    ……5分
(Ⅱ)∵
∴直线与平面所成角等于直线与平面所成角.
正方体中,显然平面
就是直线与平面所成角.                                       ……7分
中,,,
∴直线与平面所成角的正切值为.                                   ……10分
考点:本小题主要考查线面平行的证明,线面角的求解.
点评:要解决立体几何问题,要发挥空间想象能力,紧扣相应的判定定理和性质定理,定理中要求的条件要一一列举出来,求相应角时,要注意角的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,平面AEB,,,G是BC的中点.

(Ⅰ)求证:
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图:在三棱锥D-ABC中,已知是正三角形,AB平面BCD,,E为BC的中点,F在棱AC上,且

(1)求三棱锥DABC的表面积;
(2)求证AC⊥平面DEF
(3)若MBD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分) 本题共有2个小题,第1小题满分6分,第2小题满分6分.
如图已知四棱锥的底面是边长为6的正方形,侧棱的长为8,且垂直于底面,点分别是的中点.求

(1)异面直线所成角的大小(结果用反三角函数值表示);
(2)四棱锥的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)如图,在多面体ABCDE中,,,是边长为2的等边三角形,CD与平面ABDE所成角的正弦值为.

(1)在线段DC上是否存在一点F,使得,若存在,求线段DF的长度,若不存在,说明理由;
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分l2分)
如图,在多面体ABCDEF中,ABCD为菱形,ABC=60,EC面ABCD,FA面ABCD,G为BF的中点,若EG//面ABCD.

(1)求证:EG面ABF;
(2)若AF=AB,求二面角B—EF—D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD为直角梯形,AD∥BC,BAD=90°,PA底面ABCD,且PA=AD=AB=2BC=2,M、N分别为PC、PB的中点.

(Ⅰ)求证:PB平面ADMN;
(Ⅱ)求四棱锥P-ADMN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,

(1)线段的中点为,线段的中点为,求证:
(2)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
在正四棱锥V - ABCD中,P,Q分别为棱VB,VD的中点, 点M在边BC上,且BM: BC = 1 : 3,AB =2,VA =" 6."

(I )求证CQ∥平面PAN;
(II)求证:CQ⊥AP.

查看答案和解析>>

同步练习册答案