在如图的直三棱柱中,,点是的中点.
(1)求证:∥平面;
(2)求异面直线与所成的角的余弦值;
(3)求直线与平面所成角的正弦值;
(1)建立空间直角坐标系,利用向量证明,进而用线面平行的判定定理即可证明;
(2)
(3)
解析试题分析:因为已知直三棱柱的底面三边分别是3、4、5,
所以两两互相垂直,
如图以为坐标原点,直线分别为轴、轴、轴
建立空间直角标系, ……2分
则,,.
(1)设与的交点为,连接,则
则
∴∥, ∵内,平面
∴∥平面 ; ……4分
(2)∵ ∴,
. ……6分
∴;
∴所求角的余弦值为 . ……8分
(3)设平面的一个法向量,则有:
,解得,. ……10分
设直线与平面所成角为. 则,
所以直线与平面所成角的正弦值为. ……12分
(其它方法仿此酌情给分)
考点:本小题主要考查线面平行,异面直线所成的角和线面角.
点评:解决立体几何问题,可以用判定定理和性质定理,也可以建立空间直角坐标系用向量方法证明,但是用向量方法时,也要依据相应的判定定理和性质定理,定理中需要的条件要一一列举出来,一个也不能少.
科目:高中数学 来源: 题型:解答题
(本题满分12分) 本题共有2个小题,第1小题满分6分,第2小题满分6分.
如图已知四棱锥的底面是边长为6的正方形,侧棱的长为8,且垂直于底面,点分别是的中点.求
(1)异面直线与所成角的大小(结果用反三角函数值表示);
(2)四棱锥的表面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分l2分)
如图,在多面体ABCDEF中,ABCD为菱形,ABC=60,EC面ABCD,FA面ABCD,G为BF的中点,若EG//面ABCD.
(1)求证:EG面ABF;
(2)若AF=AB,求二面角B—EF—D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD为直角梯形,AD∥BC,BAD=90°,PA底面ABCD,且PA=AD=AB=2BC=2,M、N分别为PC、PB的中点.
(Ⅰ)求证:PB平面ADMN;
(Ⅱ)求四棱锥P-ADMN的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知:如图,在四棱锥中,四边形为正方形,,且,为中点.
(1)证明://平面;
(2)证明:平面平面;
(3)求二面角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,
(1)线段的中点为,线段的中点为,求证:;
(2)求直线与平面所成角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
四棱锥,面⊥面.侧面是以为直角顶点的等腰直角三角形,底面为直角梯形,,∥,⊥,为上一点,且.
(Ⅰ)求证⊥;
(Ⅱ)求二面角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
如图,在直三棱柱ABC-A1B1C1中,,,是的中点,是中点.
(1)求证:∥面;
(2)求直线EF与直线所成角的正切值;
(3)设二面角的平面角为,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com