如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2 DE=2,M为AD中点.
(Ⅰ) 证明;
(Ⅱ) 若二面角A-BF-D的平面角的余弦值为,求AB的长.
(Ⅰ).由已知为正三角形,;(Ⅱ) AB=.
解析试题分析:(Ⅰ).由已知为正三角形,
(Ⅱ) 方法一:设AB=x.取AF的中点G.由题意得DG⊥AF.
因为平面ABCD⊥平面ADEF,AB⊥AD,所以AB⊥平面ADEF,
所以AB⊥DG.所以DG⊥平面ABF.过G作GH⊥BF,垂足为H,
连结DH,则DH⊥BF,
所以∠DHG为二面角A-BF-D的平面角.在直角△AGD中,AD=2,AG=1,得DG=.
在直角△BAF中,由=sin∠AFB=,得=,所以GH=.
在直角△DGH中,DG=,GH=,得DH=.
因为cos∠DHG==,得x=,所以AB=.
方法二:设AB=x.以F为原点,AF,FQ所在的直线分别为x轴,y轴建立空间直角坐标系Fxyz.
则F(0,0,0),A(-2, 0,0),E(,0,0),D(-1,,0),B(-2,0,x),所以=(1,-,0),=(2,0,-x).
因为EF⊥平面ABF,所以平面ABF的法向量可取=(0,1,0).
设=(x1,y1,z1)为平面BFD的法向量,则
所以,可取=(,1,).因为cos<,>==,
得x=,所以AB=.
方法三:以M为原点,MA, MF所在的直线分别为x轴,y轴建立空间直角坐标系Fxyz.略
考点:本题主要考查立体几何中的垂直关系,距离的计算。
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤。本题利用向量简化了证明过程。把证明问题转化成向量的坐标运算,这种方法带有方向性。
科目:高中数学 来源: 题型:解答题
如图所示,已知AC ⊥平面CDE, BD ∥AC , 为等边三角形,F为ED边上的中点,且,
(Ⅰ)求证:CF∥面ABE;
(Ⅱ)求证:面ABE ⊥平面BDE;
(Ⅲ)求该几何体ABECD的体积。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥中,底面为直角梯形,且,,侧面底面. 若.
(Ⅰ)求证:平面;
(Ⅱ)侧棱上是否存在点,使得平面?若存在,指出点 的位置并证明,若不存在,请说明理由;
(Ⅲ)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知两个正方形ABCD 和DCEF不在同一平面内,且平面ABCD ⊥平面DCEF,M,N分别为AB,DF的中点。
(1)求直线MN与平面ABCD所成角的正弦值;
(2)求异面直线ME与BN所成角的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在三棱锥P -ABC中,点P在平面ABC上的射影D是AC的中点.BC ="2AC=8,AB" =
(I )证明:平面PBC丄平面PAC
(II)若PD =,求二面角A-PB-C的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)如图,四棱锥P-ABCD的底面ABCD是直角梯形,∠DAB=∠ABC=90o,PA⊥底面ABCD,PA=AB=AD=2,BC=1,E为PD的中点.
(1) 求证:CE∥平面PAB;
(2) 求PA与平面ACE所成角的大小;
(3) 求二面角E-AC-D的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,底面为直角梯形ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.(1)求证:PB⊥DM;(2)求CD与平面ADMN所成角的正弦值;(3)在棱PD上是否存在点E,且PE∶ED=λ,使得二面角C-AN-E的平面角为60o.若存在求出λ值,若不存在,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com