精英家教网 > 高中数学 > 题目详情
已知直线l的参数方程为
x=-1+t
y=2+t
(t为参数),在直角坐标系xOy中以O为极点,x轴正半轴为极轴建立坐标系.圆C的极坐标方程分别为ρ2=4
2
ρsin(θ-
π
4
)-6
(Ⅰ)求直线l与圆C的直角坐标方程;
(Ⅱ)设A(-1,2),P,Q为直线l与圆C的两个交点,求|PA|+|AQ|.
考点:直线的参数方程
专题:选作题,坐标系和参数方程
分析:(Ⅰ)消去参数,可得直线l的普通方程;ρ2=4
2
ρsin(θ-
π
4
)-6=4ρsinθ-4ρcosθ-6,可得圆C的直角坐标方程;
(Ⅱ)求出圆心C到直线l的距离,利用勾股定理,可求|PA|+|AQ|.
解答: 解:(Ⅰ)直线l的参数方程为
x=-1+t
y=2+t
(t为参数),消去t可得x-y+3=0;
圆C的极坐标方程分别为ρ2=4
2
ρsin(θ-
π
4
)-6=4ρsinθ-4ρcosθ-6,∴x2+y2=4y-4x-6,即(x+2)2+(y-2)2=2;
(II)易知A在直线l上,|PA|+|AQ|=|PQ|
圆心C到直线l的距离d=
|-2-2+3|
2
=
1
2
,圆C半径R=
2

(
1
2
|PQ|)2+d2=R2
,解得|PQ|=
6
…(10分)
点评:本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,极坐标方程与直角坐标方程的互化,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

执行如图所示的程序框图,若输出的结果是26,则在①处应填入的条件是(  )
A、K>2?B、K>3?
C、K>4?D、K>5?

查看答案和解析>>

科目:高中数学 来源: 题型:

为了调查我市在校中学生参加体育运动的情况,从中随机抽取了16名男同学和14名女同学,调查发现,男、女同学中分别有12人和6人喜爱运动,其余不喜爱.   
(1)根据以上数据完成以下2×2列联表:
喜爱运动 不喜爱运动 总计
16
14
总计 30
(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.010的前提下认为性别与喜爱运动有关?
(3)将以上统计结果中的频率视作概率,从我市中学生中随机抽取3人,若其中喜爱运动的人数为ξ,求ξ的分布列和均值.参考数据:
P(K2≥k0 0.40 0.25 0.10 0.010
k0 0.708 1.323 2.706 6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的各项均为正数,记A(n)=a1+a2+…+an,B(n)=a2+a3+…+an+1,C(n)=a3+a4+…+an+2,其中n∈N*
(1)若a1=1,a2=5,且对任意n∈N*,三个数A(n),B(n),C(n)依次组成等差数列,求数列{an}的通项公式.
(2)a1=1,对任意n∈N*,三个数A(n),B(n),C(n)依次组成公比为q的等比数列.求数列{an}的前n项和An公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人玩一种猜拳游戏,游戏规则如下:每人只出一只手(有5个手指头),每次出手指数为0,1,2,3,4,5是等可能的,猜拳一次只猜“单”与“双”两个结果.规定:两人手指数之和为偶数则规定猜“双”者获胜,手指数之和为奇数视为猜“单”者获胜,两人都猜中与两人都没猜中视为平局,获胜方得2分,负方得0分,平局各得1分,只要有人累计得分达到4分或者4分以上,则游戏结束.
(1)求甲、乙两人猜拳一次,甲获胜的概率;
(2)求游戏结果时,甲累计得分恰好为4分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知三边a、b、c成等比数列.
(Ⅰ)求角B的最大值;
(Ⅱ)若B=
π
4
,求sin(2A-
π
4
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1的离心率为e=
6
3
,过C1的左焦点F1的直线l:x-y+2=0被圆C2:(x-3)2+(y-3)2=r2(r>0)截得的弦长为2
2

(1)求椭圆C1的方程;
(2)设C1的右焦点为F2,在圆C2上是否存在点P,满足|PF1|=
a2
b2
|PF2|,若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

为丰富广大中学生的课余文化生活,拓展知识面,某市教育局举办了太空天文知识竞赛活动.题目均为选择题,共50题,每答对一题得2分,满分100分,每题的正确答案只有一个,现随机抽取了某中学50名学生本次竞赛的成绩,整理并制成如表:
成绩 [40,50) [50,60) [60,70) [70,80) [80,90) [90,100
]
频数 2 3 14 15 12 4
(Ⅰ)绘制出被抽查的学生成绩的频率分布直方图;
(Ⅱ)若从成绩在[40,50)中随机选出1名学生,从成绩在[90,100]中随机选出2名学生,共3名学生召开座谈会,求[40,50)组中的学生A1和[90,100]组中的学生B1同时被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=sin(x+φ)(0<φ<π)是偶函数,则φ=
 

查看答案和解析>>

同步练习册答案