精英家教网 > 高中数学 > 题目详情
甲、乙两人玩一种猜拳游戏,游戏规则如下:每人只出一只手(有5个手指头),每次出手指数为0,1,2,3,4,5是等可能的,猜拳一次只猜“单”与“双”两个结果.规定:两人手指数之和为偶数则规定猜“双”者获胜,手指数之和为奇数视为猜“单”者获胜,两人都猜中与两人都没猜中视为平局,获胜方得2分,负方得0分,平局各得1分,只要有人累计得分达到4分或者4分以上,则游戏结束.
(1)求甲、乙两人猜拳一次,甲获胜的概率;
(2)求游戏结果时,甲累计得分恰好为4分的概率.
考点:古典概型及其概率计算公式,等可能事件的概率
专题:概率与统计
分析:(1)求甲、乙两人猜拳一次,甲获胜的概率,须列出甲获胜的可能的结果,即可得到结果;
(2)求游戏结果时,甲累计得分恰好为4分的概率,可知游戏结束时甲累计得分4分,猜拳的总数有2,3,4三种情况.
解答: 解:(1)记“甲,乙两人猜拳一次,甲获胜”为事件A
甲、乙每人“猜数”,“出数”各有4种情况,
∴甲、乙两人猜拳一次共有16种情况,
其中甲获胜的有4种情况:
甲猜“双”出“双数”,乙猜“单”出“双数”;
甲猜“双”出“单数”,乙猜“单”出“单数”;
甲猜“单”出“双数”,乙猜“双”出“单数”;
甲猜“单”出“单数”,乙猜“双”出“双数”;
∴甲获胜的概率为
4
16
=
1
4

(2)记“甲、乙猜拳一次平局“为事件B,由(1)知,乙获胜的概率也为
1
4

∴P(B)=1-(
1
4
+
1
4
)=
1
2

游戏结束时甲累计得分4分,猜拳的总数有2,3,4三种情况,
所求概率P=(
1
4
)2+2×(
1
4
)3+3×
1
4
×(
1
2
)2
+6×(
1
2
)2×(
1
4
)2+(
1
2
)4
=
7
16

∴当游戏结果时,甲累计得分恰好为4分的概率为
7
16
点评:本题考查了古典概型的概率计算,写出所有的基本事件及找出符合条件的基本事件,利用基本事件个数比求概率是解答此类问题的常用方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

执行如图所示的程序框图,输出的c值为(  )
A、5B、8C、13D、21

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足f(0)=0,f(x)+f(1-x)=1,f(
x
3
)=
1
2
f(x),且当0≤x1<x2≤1时,f(x1)≤f(x2),则f(
1
2014
)的值为(  )
A、
1
256
B、
1
128
C、
1
64
D、
1
32

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-ax,g(x)=xf(x),设曲线y=g(x)在点(-1,g(-1))处的切线为l(e是
自然对数的底数).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)当a=1时,求曲线y=g(x)图象上与l平行的切线l′的方程,并判断l′与曲线y=f(x)是否存在公共点(若存在,请求出公共点的个数,若不存在,请说明理由).(参考数据:ln2=0.69…,ln3=1.09…)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中,前n项和为Sn,若a3+a9=6,则S11=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的参数方程为
x=-1+t
y=2+t
(t为参数),在直角坐标系xOy中以O为极点,x轴正半轴为极轴建立坐标系.圆C的极坐标方程分别为ρ2=4
2
ρsin(θ-
π
4
)-6
(Ⅰ)求直线l与圆C的直角坐标方程;
(Ⅱ)设A(-1,2),P,Q为直线l与圆C的两个交点,求|PA|+|AQ|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知极点与原点重合,极轴与x轴正半轴重合,若直线C1的极坐标方程为:ρcos(θ-
π
4
)=
2
,曲线C2的参数方程为:
x=1+cosθ
y=3+sinθ
(θ为参数),试求曲线C2关于直线C1对称的曲线的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},{bn},满足a1=2,2an=1+an•an+1,bn=an-1(bn≠0).
(Ⅰ)求证数列{
1
bn
}是等差数列,并求数列{an}的通项公式;
(Ⅱ)令cn=bnbn+1,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以O为极点,Ox为极轴,则圆ρ=3cosθ被直线
x=2+2t
y=1+4t
(t是参数)截得的弦长为
 

查看答案和解析>>

同步练习册答案